\r\n" );
document.write( "Prove: for
\r\n" );
document.write( "\r\n" );
document.write( "
.\r\n" );
document.write( " \r\n" );
document.write( "Euler's equation:
\r\n" );
document.write( "\r\n" );
document.write( "From which we can get: \r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( "So each of the factors in the original expression is:\r\n" );
document.write( " \r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( "where k goes from 1 to n-1\r\n" );
document.write( " \r\n" );
document.write( "Factor out the first term:\r\n" );
document.write( " \r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( "The original expression becomes a product of these three things:\r\n" );
document.write( " \r\n" );
document.write( "#1.
\r\n" );
document.write( " \r\n" );
document.write( "#2.
\r\n" );
document.write( " \r\n" );
document.write( "#3.
\r\n" );
document.write( " \r\n" );
document.write( "where k goes from 1 to n-1\r\n" );
document.write( " \r\n" );
document.write( "Adding the exponents in #1.\r\n" );
document.write( " \r\n" );
document.write( "#1.
\r\n" );
document.write( " \r\n" );
document.write( "The sum of the first n-1 integers is
, so the\r\n" );
document.write( "exponent of e becomes\r\n" );
document.write( " \r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( "and #1 is now \r\n" );
document.write( " \r\n" );
document.write( "#1.
\r\n" );
document.write( " \r\n" );
document.write( "Since #3
\r\n" );
document.write( "it gives the product:\r\n" );
document.write( " \r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Putting #1 and #3 together:\r\n" );
document.write( "\r\n" );
document.write( "#1*#3
\r\n" );
document.write( "\r\n" );
document.write( "Now we look at #2 again.\r\n" );
document.write( "\r\n" );
document.write( "#2.
\r\n" );
document.write( "\r\n" );
document.write( "Those factors are all (1 - an nth root of 1 other than 1 itself. To show that\r\n" );
document.write( "\r\n" );
document.write( "1 = cis(0 + 2k*pi) = e^(2k*pi) \r\n" );
document.write( "\r\n" );
document.write( "and by DeMoivre's theorem the n nth roots of unity are \r\n" );
document.write( "\r\n" );
document.write( "cis(2k*pi/n) and\r\n" );
document.write( "\r\n" );
document.write( "that's what the second terms in those parenthetical expressions are.\r\n" );
document.write( "\r\n" );
document.write( "and we can use any n-1 consecutive even integers for k, so here we are using\r\n" );
document.write( "the n-1 negative consecutive even integers -2, -4, -6, -2(n-1). And they\r\n" );
document.write( "won't include 1 itself because we are not including integers 0 or 2n.\r\n" );
document.write( "\r\n" );
document.write( "The nth roots of 1 can also be gotten by solving the equation\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "The first parentheses give us the root of one which is 1 itself.\r\n" );
document.write( "The n-1 degree polynomial in the second parentheses has solutions\r\n" );
document.write( "which are all the n-1 nth roots of 1 other than 1.\r\n" );
document.write( "\r\n" );
document.write( "Therefore the polynomial\r\n" );
document.write( "\r\n" );
document.write( "#4. x^(n-1)+x^(n-2)+x^(n-3)+\"...\"+1 \r\n" );
document.write( "\r\n" );
document.write( "is equivalent to a polynomial which is like #2 with\r\n" );
document.write( "x's placed where the 1's are.\r\n" );
document.write( "\r\n" );
document.write( "#5.
\r\n" );
document.write( "\r\n" );
document.write( "because they have the same solution and both have leading\r\n" );
document.write( "coefficient 1.\r\n" );
document.write( "\r\n" );
document.write( "So when we substitute 1 for x in #5, we get #2 and when\r\n" );
document.write( "we substitute 1 for x in #4 we get n because there are n terms.\r\n" );
document.write( "Therefore #2 simplifies to just n\r\n" );
document.write( " \r\n" );
document.write( "Therefore #1*#2*#3 =
\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" );
document.write( " \n" );
document.write( "