document.write( "Question 445384: How do you solve cos2Θ = cosΘ where Θ, 0° ≤ Θ < 360°
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #306816 by poliphob3.14(115)\"\" \"About 
You can put this solution on YOUR website!
For convenience substitute \"theta=x\" and modify the trigonometric equation:\r
\n" ); document.write( "\n" ); document.write( "\"cos2x=cosx\", since \"cos2x=%28cosx%29%5E2-%28sinx%29%5E2\" and \r
\n" ); document.write( "\n" ); document.write( "\"%28sinx%29%5E2=1-%28cosx%29%5E2\", substituting we get:\"%28cosx%29%5E2-%28sinx%29%5E2=cosx\" =>\r
\n" ); document.write( "\n" ); document.write( "\"%28cosx%29%5E2-1%2B%28cosx%29%5E2=cosx\" => \"2%28cosx%29%5E2-cosx-1=0\". In the last equation\r
\n" ); document.write( "\n" ); document.write( "substitute \"cosx=y\" and get the quadratic equation: \"2y%5E2-y-1=0\",\r
\n" ); document.write( "\n" ); document.write( "Solving this equation \"2y%5E2-y-1=%282y%2B1%29%28y-1%29=0\" we find y=1 and y=-1/2.\r
\n" ); document.write( "\n" ); document.write( "Trigonometric equation \"cos2x=cosx\" is equivalent with two new equations:\r
\n" ); document.write( "\n" ); document.write( "\"cosx=-1\" and \"cosx=-1%2F2\". Solving these equations we have;\r
\n" ); document.write( "\n" ); document.write( "\"cosx=-1\" => \"x=180\"degree and \"cosx=-1%2F2\" => \"x=120\", and \r
\n" ); document.write( "\n" ); document.write( "\"x=240\"degree.
\n" ); document.write( "
\n" );