document.write( "Question 441532: the excursion boat Holiday travels 35 km upstream and then back again in 4h 48min. if the speed of the Holiday in still water is 15km/h, what is the speed of the current?\r
\n" ); document.write( "\n" ); document.write( "how would i set up an equation to solve this??
\n" ); document.write( "

Algebra.Com's Answer #304743 by rwm(914)\"\" \"About 
You can put this solution on YOUR website!
the distance is the same up and down stream
\n" ); document.write( "upstream means against the current s-c
\n" ); document.write( "downstream is with the current s+c\r
\n" ); document.write( "\n" ); document.write( "trip takes 4 48/60 hrs
\n" ); document.write( "r*t=d
\n" ); document.write( "(s-c)*u=35
\n" ); document.write( "(s+c)*d=35
\n" ); document.write( "u+d=4 48/60
\n" ); document.write( "s=15
\n" ); document.write( "we can substitute 15 for s
\n" ); document.write( "u=35-d
\n" ); document.write( "35-d for u
\n" ); document.write( "(15-c)*(35-d)=(15+c)*d
\n" ); document.write( "c=5/2 or 2.5 current
\n" ); document.write( "d=2
\n" ); document.write( "s=15
\n" ); document.write( "u=14/5= 2.8\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );