document.write( "Question 438966: Prove the following is an identity.\r
\n" );
document.write( "\n" );
document.write( "1) 2csc^2 x = [(1/(1+cos x)] + [(1/1-cos x)]\r
\n" );
document.write( "\n" );
document.write( "2)cos x/(sin x*tan x+ cos x) = 1/ sec^2 x\r
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #303461 by Edwin McCravy(20060)![]() ![]() You can put this solution on YOUR website! \r\n" ); document.write( " 1 1\r\n" ); document.write( "2csc²x = + \r\n" ); document.write( " 1 + cos x 1 - cos x\r\n" ); document.write( "\r\n" ); document.write( "The LCD on the right is (1 + cos x)(1 - cos x)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " 1(1 - cos x) 1(1 + cos x)\r\n" ); document.write( "2csc²x = + \r\n" ); document.write( " (1 + cos x)(1 - cos x) (1 - cos x)(1 + cos x)\r\n" ); document.write( "\r\n" ); document.write( " 1 - cos x 1 + cos x\r\n" ); document.write( "2csc²x = + \r\n" ); document.write( " (1 + cos x)(1 - cos x) (1 - cos x)(1 + cos x)\r\n" ); document.write( "\r\n" ); document.write( "Combine over the common denominator:\r\n" ); document.write( "\r\n" ); document.write( " 1 - cos x + 1 + cos x\r\n" ); document.write( "2csc²x = \r\n" ); document.write( " (1 + cos x)(1 - cos x) \r\n" ); document.write( "\r\n" ); document.write( "Simplify the top and FOIL out the bottom\r\n" ); document.write( "\r\n" ); document.write( " 2 \r\n" ); document.write( "2csc²x = \r\n" ); document.write( " 1 - cos²x \r\n" ); document.write( "\r\n" ); document.write( "Use the identity \n" ); document.write( " \n" ); document.write( " |