document.write( "Question 437895: Use 4x^2 - y^2 - 8x - 4y + 16 = 0 to do the following.\r
\n" ); document.write( "\n" ); document.write( "Write the equation in standard form.
\n" ); document.write( "I got (x-1)^2/2 - (y-2)^2/8 = 1\r
\n" ); document.write( "\n" ); document.write( "Locate the centre and vertices of this curve.\r
\n" ); document.write( "\n" ); document.write( "State the domain and range of this curve.
\n" ); document.write( "

Algebra.Com's Answer #303351 by ewatrrr(24785)\"\" \"About 
You can put this solution on YOUR website!
 
\n" ); document.write( "Hi,
\n" ); document.write( " 4x^2 - y^2 - 8x - 4y + 16 = 0 |Multiplying thru by -1
\n" ); document.write( " y^2 + 4y - 4x^2 + 8x - 16 = 0
\n" ); document.write( " (y+2)^2 -4 - 4[(x-1)^2 -1] - 16 = 0
\n" ); document.write( " (y+2)^2 -4 - 4(x-1)^2 +4 - 16 = 0
\n" ); document.write( " (y+2)^2 - 4(x-1)^2 = 16
\n" ); document.write( " \"%28y%2B2%29%5E2%2F16+-++%28x-1%29%5E2%2F4+=+1\" C(1,-2) Vertices: (1,-6) and (1,2)
\n" ); document.write( "Domain: and Range: {y ≤ -6 , y ≥ 2}
\n" ); document.write( " \n" ); document.write( "
\n" );