document.write( "Question 428941: Write the equation of the Ellipse, in Standard Form: Foci: (-1, -2), (-1, 6) Vertices: (-1, -6), (-1, 10) \n" ); document.write( "
Algebra.Com's Answer #298723 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
Write the equation of the Ellipse, in Standard Form: Foci: (-1, -2), (-1, 6) Vertices: (-1, -6), (-1, 10)
\n" ); document.write( "..\r
\n" ); document.write( "\n" ); document.write( "Standard form of ellipse for horizontal major axis: (x-h)^2/a^2+(y-k)^2/b^2=1 (a>b)
\n" ); document.write( "Standard form of ellipse for vertical major axis: (y-k)^2/a^2+(x-h)^2/b^2=1 (a>b)
\n" ); document.write( "In both forms, (h,k) represent the (x,y) coordinates of the center.
\n" ); document.write( ".. \r
\n" ); document.write( "\n" ); document.write( "Given data shows this ellipse has a vertical major axis on line x=-1, so, it is of the second form:
\n" ); document.write( "Center:(-1,2) (half way between foci or vertices on the major axis)
\n" ); document.write( "Length of major axis=16 (between vertices on the major axis)=2a
\n" ); document.write( "2a=16
\n" ); document.write( "a=8
\n" ); document.write( "a^2=64
\n" ); document.write( "c=4(from ctr to either foci on major axis)
\n" ); document.write( "c^2=a^2-b^2
\n" ); document.write( "b^2=a^2-c^2=64-16=48
\n" ); document.write( "b=sqrt(48)
\n" ); document.write( "b^2=48
\n" ); document.write( "We now have the information we need to write the equation of this ellipse:\r
\n" ); document.write( "\n" ); document.write( "(y-2)^2/64+(x+1)^2/48=1\r
\n" ); document.write( "\n" ); document.write( "see the graph below as a visual check on the answers above\r
\n" ); document.write( "\n" ); document.write( "..
\n" ); document.write( "y=(64(1-(x+1)^2/48))^.5+2
\n" ); document.write( "
\n" ); document.write( "
\n" );