document.write( "Question 428941: Write the equation of the Ellipse, in Standard Form: Foci: (-1, -2), (-1, 6) Vertices: (-1, -6), (-1, 10) \n" ); document.write( "
Algebra.Com's Answer #298723 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! Write the equation of the Ellipse, in Standard Form: Foci: (-1, -2), (-1, 6) Vertices: (-1, -6), (-1, 10) \n" ); document.write( "..\r \n" ); document.write( "\n" ); document.write( "Standard form of ellipse for horizontal major axis: (x-h)^2/a^2+(y-k)^2/b^2=1 (a>b) \n" ); document.write( "Standard form of ellipse for vertical major axis: (y-k)^2/a^2+(x-h)^2/b^2=1 (a>b) \n" ); document.write( "In both forms, (h,k) represent the (x,y) coordinates of the center. \n" ); document.write( ".. \r \n" ); document.write( "\n" ); document.write( "Given data shows this ellipse has a vertical major axis on line x=-1, so, it is of the second form: \n" ); document.write( "Center:(-1,2) (half way between foci or vertices on the major axis) \n" ); document.write( "Length of major axis=16 (between vertices on the major axis)=2a \n" ); document.write( "2a=16 \n" ); document.write( "a=8 \n" ); document.write( "a^2=64 \n" ); document.write( "c=4(from ctr to either foci on major axis) \n" ); document.write( "c^2=a^2-b^2 \n" ); document.write( "b^2=a^2-c^2=64-16=48 \n" ); document.write( "b=sqrt(48) \n" ); document.write( "b^2=48 \n" ); document.write( "We now have the information we need to write the equation of this ellipse:\r \n" ); document.write( "\n" ); document.write( "(y-2)^2/64+(x+1)^2/48=1\r \n" ); document.write( "\n" ); document.write( "see the graph below as a visual check on the answers above\r \n" ); document.write( "\n" ); document.write( ".. \n" ); document.write( "y=(64(1-(x+1)^2/48))^.5+2 \n" ); document.write( " |