document.write( "Question 430116: Rewrite & simplify the given expression using positive exponents only.
\n" );
document.write( "(square root x^-5 + x^-5y^7z^-2)(x^9y^-2z^9)
\n" );
document.write( "Only x^-5 is a square root \n" );
document.write( "
Algebra.Com's Answer #298698 by haileytucki(390)![]() ![]() You can put this solution on YOUR website! ~ = square root of in this answer\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "(~(x^(-5))+x^(-5)y^(7)z^(-2))(x^(9)y^(-2)z^(9))\r \n" ); document.write( "\n" ); document.write( "Pull all perfect square roots out from under the radical. In this case, remove the x^(-3) because it is a perfect square. \n" ); document.write( "(x^(-3)~(x)+x^(-5)y^(7)z^(-2))(x^(9)y^(-2)z^(9))\r \n" ); document.write( "\n" ); document.write( "Move all negative exponents from the numerator to the denominator and make the exponents positive. A negative exponent follows the rule: a^(-n)=(1)/(a^(n)). \n" ); document.write( "(x^(-3)~(x)+(y^(7))/(x^(5)z^(2)))(x^(9)y^(-2)z^(9))\r \n" ); document.write( "\n" ); document.write( "Remove the negative exponent in the numerator by rewriting x^(-3)~(x) as (~(x))/(x^(3)). A negative exponent follows the rule: a^(-n)=(1)/(a^(n)). \n" ); document.write( "((~(x))/(x^(3))+(y^(7))/(x^(5)z^(2)))(x^(9)y^(-2)z^(9))\r \n" ); document.write( "\n" ); document.write( "To add fractions, the denominators must be equal. The denominators can be made equal by finding the least common denominator (LCD). In this case, the LCD is x^(5)z^(2). Next, multiply each fraction by a factor of 1 that will create the LCD in each of the fractions. \n" ); document.write( "((~(x))/(x^(3))*(x^(2)z^(2))/(x^(2)z^(2))+(y^(7))/(x^(5)z^(2)))(x^(9)y^(-2)z^(9))\r \n" ); document.write( "\n" ); document.write( "Complete the multiplication to produce a denominator of x^(5)z^(2) in each expression. \n" ); document.write( "((x^(2)z^(2)~(x))/(x^(5)z^(2))+(y^(7))/(x^(5)z^(2)))(x^(9)y^(-2)z^(9))\r \n" ); document.write( "\n" ); document.write( "Combine the numerators of all expressions that have common denominators. \n" ); document.write( "((x^(2)z^(2)~(x)+y^(7))/(x^(5)z^(2)))(x^(9)y^(-2)z^(9))\r \n" ); document.write( "\n" ); document.write( "Remove the negative exponent in the numerator by rewriting x^(9)y^(-2)z^(9) as (x^(9)z^(9))/(y^(2)). A negative exponent follows the rule: a^(-n)=(1)/(a^(n)). \n" ); document.write( "((x^(2)z^(2)~(x)+y^(7))/(x^(5)z^(2)))((x^(9)z^(9))/(y^(2)))\r \n" ); document.write( "\n" ); document.write( "Multiply ((x^(2)z^(2)~(x)+y^(7)))/(x^(5)z^(2)) by (x^(9)z^(9))/(y^(2)) to get (x^(4)z^(7)(x^(2)z^(2)~(x)+y^(7)))/(y^(2)). \n" ); document.write( "((x^(4)z^(7)(x^(2)z^(2)~(x)+y^(7)))/(y^(2)))\r \n" ); document.write( "\n" ); document.write( "Remove the parentheses around the expression (x^(4)z^(7)(x^(2)z^(2)~(x)+y^(7)))/(y^(2)). \n" ); document.write( "(x^(4)z^(7)(x^(2)z^(2)~(x)+y^(7)))/(y^(2)) \n" ); document.write( " |