document.write( "Question 421433: ((4x^2 - 16)/(2-x)). Again worked hard, I know the answer is -4(x + 2) but I am not getting the steps to that answer.\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #294299 by algebrahouse.com(1659)\"\" \"About 
You can put this solution on YOUR website!
\"((4x^2 - 16)/(2-x)). Again worked hard, I know the answer is -4(x + 2) but I am not getting the steps to that answer.\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "4x^2 - 16
\n" ); document.write( "---------
\n" ); document.write( "2 - x\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "4(x^2 - 4)
\n" ); document.write( "---------- {factored 4 out of top, and flipped bottom around}
\n" ); document.write( "-x + 2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "4(x + 2)(x - 2)
\n" ); document.write( "--------------- {factored top into two binomials, and factored -1 out of bottom}
\n" ); document.write( "-1(x - 2)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "= -4(x + 2) {cancelled x - 2 on top and bottom}
\n" ); document.write( "www.algebrahouse.com
\n" ); document.write( "
\n" ); document.write( "
\n" );