document.write( "Question 415037: (a^2+5ab+6b^2/a^2-5ab+6b^2) * (10a-30b/5a+10b) \n" ); document.write( "
Algebra.Com's Answer #291017 by woolybear(13)![]() ![]() You can put this solution on YOUR website! If simplify this what you come up with. \n" ); document.write( "(a^(2)+5ab+(6b^(2))/(a^(2))-5ab+6b^(2))*(10a-(30b)/(5)*a+10b)\r \n" ); document.write( "\n" ); document.write( "Since 5ab and -5ab are like terms, add -5ab to 5ab to get 0. \n" ); document.write( "(a^(2)+(6b^(2))/(a^(2))+6b^(2))*(10a-(30b)/(5)*a+10b)\r \n" ); document.write( "\n" ); document.write( "To add fractions, the denominators must be equal. The denominators can be made equal by finding the least common denominator (LCD). In this case, the LCD is a^(2). Next, multiply each fraction by a factor of 1 that will create the LCD in each of the fractions. \n" ); document.write( "(a^(2)*(a^(2))/(a^(2))+(6b^(2))/(a^(2))+6b^(2)*(a^(2))/(a^(2)))*(10a-(30b)/(5)*a+10b)\r \n" ); document.write( "\n" ); document.write( "Complete the multiplication to produce a denominator of a^(2) in each expression. \n" ); document.write( "((a^(4))/(a^(2))+(6b^(2))/(a^(2))+(6a^(2)b^(2))/(a^(2)))*(10a-(30b)/(5)*a+10b)\r \n" ); document.write( "\n" ); document.write( "Combine the numerators of all expressions that have common denominators. \n" ); document.write( "((a^(4)+6b^(2)+6a^(2)b^(2))/(a^(2)))*(10a-(30b)/(5)*a+10b)\r \n" ); document.write( "\n" ); document.write( "Reorder the polynomial a^(4)+6b^(2)+6a^(2)b^(2) alphabetically from left to right, starting with the highest order term. \n" ); document.write( "((a^(4)+6a^(2)b^(2)+6b^(2))/(a^(2)))*(10a-(30b)/(5)*a+10b)\r \n" ); document.write( "\n" ); document.write( "Reduce the expression -(30b)/(5) by removing a factor of 5 from the numerator and denominator. \n" ); document.write( "((a^(4)+6a^(2)b^(2)+6b^(2))/(a^(2)))*(10a-6b*a+10b)\r \n" ); document.write( "\n" ); document.write( "Multiply -6b by a to get -6ab. \n" ); document.write( "((a^(4)+6a^(2)b^(2)+6b^(2))/(a^(2)))*(10a-6ab+10b)\r \n" ); document.write( "\n" ); document.write( "Reorder the polynomial 10a-6ab+10b alphabetically from left to right, starting with the highest order term. \n" ); document.write( "((a^(4)+6a^(2)b^(2)+6b^(2))/(a^(2)))*(-6ab+10a+10b)\r \n" ); document.write( "\n" ); document.write( "Multiply each term in the first polynomial by each term in the second polynomial. \n" ); document.write( "((a^(4)+6a^(2)b^(2)+6b^(2))/(a^(2))*-6ab+(a^(4)+6a^(2)b^(2)+6b^(2))/(a^(2))*10a+(a^(4)+6a^(2)b^(2)+6b^(2))/(a^(2))*10b)\r \n" ); document.write( "\n" ); document.write( "Multiply ((a^(4)+6a^(2)b^(2)+6b^(2)))/(a^(2)) by each term in -6ab+10a+10b to get -(2(3a^(5)b+18a^(3)b^(3)-5a^(5)-30a^(3)b^(2)-5a^(4)b-30a^(2)b^(3)+18ab^(3)-30ab^(2)-30b^(3)))/(a^(2)). \n" ); document.write( "(-(2(3a^(5)b+18a^(3)b^(3)-5a^(5)-30a^(3)b^(2)-5a^(4)b-30a^(2)b^(3)+18ab^(3)-30ab^(2)-30b^(3)))/(a^(2)))\r \n" ); document.write( "\n" ); document.write( "Remove the parentheses around the expression -(2(3a^(5)b+18a^(3)b^(3)-5a^(5)-30a^(3)b^(2)-5a^(4)b-30a^(2)b^(3)+18ab^(3)-30ab^(2)-30b^(3)))/(a^(2)). \n" ); document.write( "-(2(3a^(5)b+18a^(3)b^(3)-5a^(5)-30a^(3)b^(2)-5a^(4)b-30a^(2)b^(3)+18ab^(3)-30ab^(2)-30b^(3)))/(a^(2)) \n" ); document.write( " |