document.write( "Question 413587: designing a pool where the area 16 and the perimeter is 20. \n" ); document.write( "
Algebra.Com's Answer #290203 by nerdybill(7384)\"\" \"About 
You can put this solution on YOUR website!
designing a pool where the area 16 and the perimeter is 20.
\n" ); document.write( ".
\n" ); document.write( "assuming it's a rectangular pool...
\n" ); document.write( ".
\n" ); document.write( "Let W = width
\n" ); document.write( "and L = length
\n" ); document.write( ".
\n" ); document.write( "from knowledge of perimeter:
\n" ); document.write( "2(W+L) = 20
\n" ); document.write( "W+L = 10 (equation 1)
\n" ); document.write( ".
\n" ); document.write( "from knowledge of area:
\n" ); document.write( "WL = 16 (equation 2)
\n" ); document.write( ".
\n" ); document.write( "Solving equation 1 for L we get:
\n" ); document.write( "L = 10-W
\n" ); document.write( "Substitute into equation 2:
\n" ); document.write( "W(10-W) = 16
\n" ); document.write( "W^2+10W = 16
\n" ); document.write( "W^2+10W-16 = 0
\n" ); document.write( "Applying the quadratic formula we get:
\n" ); document.write( "W = {1.4, -11.4}
\n" ); document.write( ".
\n" ); document.write( "Find L by substitutiting above into equation 1:
\n" ); document.write( "1.4+L = 10
\n" ); document.write( "L = 8.6
\n" ); document.write( ".
\n" ); document.write( "Dimensions are: 1.4 by 8.6
\n" ); document.write( ".
\n" ); document.write( "Details of quadratic follows
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
Solved by pluggable solver: SOLVE quadratic equation with variable
Quadratic equation \"aW%5E2%2BbW%2Bc=0\" (in our case \"1W%5E2%2B10W%2B-16+=+0\") has the following solutons:
\n" ); document.write( "
\n" ); document.write( " \"W%5B12%5D+=+%28b%2B-sqrt%28+b%5E2-4ac+%29%29%2F2%5Ca\"
\n" ); document.write( "
\n" ); document.write( " For these solutions to exist, the discriminant \"b%5E2-4ac\" should not be a negative number.
\n" ); document.write( "
\n" ); document.write( " First, we need to compute the discriminant \"b%5E2-4ac\": \"b%5E2-4ac=%2810%29%5E2-4%2A1%2A-16=164\".
\n" ); document.write( "
\n" ); document.write( " Discriminant d=164 is greater than zero. That means that there are two solutions: \"+x%5B12%5D+=+%28-10%2B-sqrt%28+164+%29%29%2F2%5Ca\".
\n" ); document.write( "
\n" ); document.write( " \"W%5B1%5D+=+%28-%2810%29%2Bsqrt%28+164+%29%29%2F2%5C1+=+1.40312423743285\"
\n" ); document.write( " \"W%5B2%5D+=+%28-%2810%29-sqrt%28+164+%29%29%2F2%5C1+=+-11.4031242374328\"
\n" ); document.write( "
\n" ); document.write( " Quadratic expression \"1W%5E2%2B10W%2B-16\" can be factored:
\n" ); document.write( " \"1W%5E2%2B10W%2B-16+=+1%28W-1.40312423743285%29%2A%28W--11.4031242374328%29\"
\n" ); document.write( " Again, the answer is: 1.40312423743285, -11.4031242374328.\n" ); document.write( "Here's your graph:
\n" ); document.write( "\"graph%28+500%2C+500%2C+-10%2C+10%2C+-20%2C+20%2C+1%2Ax%5E2%2B10%2Ax%2B-16+%29\"

\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );