document.write( "Question 412001: find the diretrix, focus,vertex and then graph
\n" );
document.write( "y=1/12(x+1)^2-2 \n" );
document.write( "
Algebra.Com's Answer #289647 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! find the diretrix, focus,vertex and then graph \n" ); document.write( "y=1/12(x+1)^2-2\r \n" ); document.write( "\n" ); document.write( "..\r \n" ); document.write( "\n" ); document.write( "Standard form of given parabola: (x-h)^2=4p(y-k), with (h,k) being the (x,y) coordinates of the vertex. \n" ); document.write( "y=1/12(x+1)^2-2 \n" ); document.write( "12y=(x+1)^2-24 \n" ); document.write( "12y+24=(x+1)^2 \n" ); document.write( "12(y+2)=(x+1)^2 \n" ); document.write( "(x+1)^2=12(y+2) \n" ); document.write( "This is a parabola that opens upward with vertex at (-1,-2). \n" ); document.write( "axis of symmetry: x=-1 \n" ); document.write( "4p=12 \n" ); document.write( "p=3 \n" ); document.write( "diretrix: y=-5 \n" ); document.write( "focus: (-1,1) \n" ); document.write( "vertex:(-1,-2)\r \n" ); document.write( "\n" ); document.write( "..\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " |