document.write( "Question 412001: find the diretrix, focus,vertex and then graph
\n" ); document.write( "y=1/12(x+1)^2-2
\n" ); document.write( "

Algebra.Com's Answer #289647 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
find the diretrix, focus,vertex and then graph
\n" ); document.write( "y=1/12(x+1)^2-2\r
\n" ); document.write( "\n" ); document.write( "..\r
\n" ); document.write( "\n" ); document.write( "Standard form of given parabola: (x-h)^2=4p(y-k), with (h,k) being the (x,y) coordinates of the vertex.
\n" ); document.write( "y=1/12(x+1)^2-2
\n" ); document.write( "12y=(x+1)^2-24
\n" ); document.write( "12y+24=(x+1)^2
\n" ); document.write( "12(y+2)=(x+1)^2
\n" ); document.write( "(x+1)^2=12(y+2)
\n" ); document.write( "This is a parabola that opens upward with vertex at (-1,-2).
\n" ); document.write( "axis of symmetry: x=-1
\n" ); document.write( "4p=12
\n" ); document.write( "p=3
\n" ); document.write( "diretrix: y=-5
\n" ); document.write( "focus: (-1,1)
\n" ); document.write( "vertex:(-1,-2)\r
\n" ); document.write( "\n" ); document.write( "..\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"+graph%28+300%2C+300%2C+-10%2C+10%2C+-7%2C+5%2C+%281%2F12%29%2A%28x%2B1%29%5E2-2%2C-5%29+\"
\n" ); document.write( "
\n" );