document.write( "Question 411181: factor x^2-200x-1800 \n" ); document.write( "
Algebra.Com's Answer #289018 by MathLover1(20850)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "
Solved by pluggable solver: Factoring using the AC method (Factor by Grouping)


Looking at the expression \"x%5E2%2B200x%2B1800\", we can see that the first coefficient is \"1\", the second coefficient is \"200\", and the last term is \"1800\".



Now multiply the first coefficient \"1\" by the last term \"1800\" to get \"%281%29%281800%29=1800\".



Now the question is: what two whole numbers multiply to \"1800\" (the previous product) and add to the second coefficient \"200\"?



To find these two numbers, we need to list all of the factors of \"1800\" (the previous product).



Factors of \"1800\":

1,2,3,4,5,6,8,9,10,12,15,18,20,24,25,30,36,40,45,50,60,72,75,90,100,120,150,180,200,225,300,360,450,600,900,1800

-1,-2,-3,-4,-5,-6,-8,-9,-10,-12,-15,-18,-20,-24,-25,-30,-36,-40,-45,-50,-60,-72,-75,-90,-100,-120,-150,-180,-200,-225,-300,-360,-450,-600,-900,-1800



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to \"1800\".

1*1800 = 1800
2*900 = 1800
3*600 = 1800
4*450 = 1800
5*360 = 1800
6*300 = 1800
8*225 = 1800
9*200 = 1800
10*180 = 1800
12*150 = 1800
15*120 = 1800
18*100 = 1800
20*90 = 1800
24*75 = 1800
25*72 = 1800
30*60 = 1800
36*50 = 1800
40*45 = 1800
(-1)*(-1800) = 1800
(-2)*(-900) = 1800
(-3)*(-600) = 1800
(-4)*(-450) = 1800
(-5)*(-360) = 1800
(-6)*(-300) = 1800
(-8)*(-225) = 1800
(-9)*(-200) = 1800
(-10)*(-180) = 1800
(-12)*(-150) = 1800
(-15)*(-120) = 1800
(-18)*(-100) = 1800
(-20)*(-90) = 1800
(-24)*(-75) = 1800
(-25)*(-72) = 1800
(-30)*(-60) = 1800
(-36)*(-50) = 1800
(-40)*(-45) = 1800


Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"200\":



\n" ); document.write( "
First NumberSecond NumberSum
118001+1800=1801
29002+900=902
36003+600=603
44504+450=454
53605+360=365
63006+300=306
82258+225=233
92009+200=209
1018010+180=190
1215012+150=162
1512015+120=135
1810018+100=118
209020+90=110
247524+75=99
257225+72=97
306030+60=90
365036+50=86
404540+45=85
-1-1800-1+(-1800)=-1801
-2-900-2+(-900)=-902
-3-600-3+(-600)=-603
-4-450-4+(-450)=-454
-5-360-5+(-360)=-365
-6-300-6+(-300)=-306
-8-225-8+(-225)=-233
-9-200-9+(-200)=-209
-10-180-10+(-180)=-190
-12-150-12+(-150)=-162
-15-120-15+(-120)=-135
-18-100-18+(-100)=-118
-20-90-20+(-90)=-110
-24-75-24+(-75)=-99
-25-72-25+(-72)=-97
-30-60-30+(-60)=-90
-36-50-36+(-50)=-86
-40-45-40+(-45)=-85




From the table, we can see that there are no pairs of numbers which add to \"200\". So \"x%5E2%2B200x%2B1800\" cannot be factored.



===============================================================





Answer:



So \"x%5E2%2B200%2Ax%2B1800\" doesn't factor at all (over the rational numbers).



So \"x%5E2%2B200%2Ax%2B1800\" is prime.

\n" ); document.write( "
\n" ); document.write( "
\n" );