document.write( "Question 409759: Hi can you please help me with this question, graph the equation equal to:9x^2+16y^2+36x-32y-92=0 and find the vertix, focus point and axis of symmetry. Thank you all your help \n" ); document.write( "
Algebra.Com's Answer #288632 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! 9x^2+16y^2+36x-32y-92=0 \n" ); document.write( "find the vertex, focus point and axis of symmetry\r \n" ); document.write( "\n" ); document.write( "..\r \n" ); document.write( "\n" ); document.write( "9x^2+16y^2+36x-32y-92=0 \n" ); document.write( "factor and completing the square (to complete the square, coefficients of x^2 and y^2 must be=1 \n" ); document.write( "9(x^2+4x+4)+16(y^2-2y+1)=92+36+16=144 \n" ); document.write( "9(x+2)^2+16(y-1)^2=144 \n" ); document.write( "divide by 144 \n" ); document.write( "(x+2)^2/16+(y-1)^2/9=1 \n" ); document.write( "This is an ellipse with horizontal major axis and center at (-2,1) \n" ); document.write( "standard form of an ellipse: (x-h)^2/a^2+(y-k)^2/b^2=1 \n" ); document.write( "a^2=16 \n" ); document.write( "a=4 \n" ); document.write( "b^2=9 \n" ); document.write( "b=3 \n" ); document.write( "c^2=a^2-b^2=16-9=7 \n" ); document.write( "c=sqrt(7)=2.65 \n" ); document.write( "The vertices are on the horizontal major axis, at x=-2+-a=-2+-4=-6 and 2 \n" ); document.write( "The focal points are also on the major axis, at x=-2+-c=-2+-sqrt(7)=-4.65 and .65. Axis of symmetry does not apply to ellipses \n" ); document.write( "ans: \n" ); document.write( "center:(-2,1) \n" ); document.write( "vertices:(-6,1),(2,1) \n" ); document.write( "foci:(-4.65,1),(.65,1) \n" ); document.write( "axis of symmetry does not apply to ellipse. It applies to parabolas. \n" ); document.write( "see the graph of the ellipse below: \n" ); document.write( ".. \n" ); document.write( "y=1+((144-9(x+2)^2)/16)^.5\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " |