document.write( "Question 409852: The sum of the digits of a two-digit number is 7. The number formed by reversing the digits is two more than double the original number. Find the original number. \n" ); document.write( "
Algebra.Com's Answer #288360 by josmiceli(19441)\"\" \"About 
You can put this solution on YOUR website!
Let the units digit = \"a\"
\n" ); document.write( "Let the tens digit = \"b\"
\n" ); document.write( "the number is: \"10b+%2B+a\"
\n" ); document.write( "the number with reversed digits is: \"10a+%2B+b\"
\n" ); document.write( "given:
\n" ); document.write( "(1) \"a+%2B+b+=+7\"
\n" ); document.write( "(2) \"10a+%2B+b+=+2%2A%2810b+%2B+a%29+%2B+2\"
\n" ); document.write( "---------------------------
\n" ); document.write( "(2) \"10a+%2B+b+=+20b+%2B+2a+%2B+2\"
\n" ); document.write( "(2) \"8a+-+19b+=+2\"
\n" ); document.write( "Multiply both sides of (1) by \"8\"
\n" ); document.write( "and subtract (1) from (2)
\n" ); document.write( "(2) \"8a+-+19b+=+2\"
\n" ); document.write( "(1) \"-8a+-+8b+=+-56\"
\n" ); document.write( "\"-27b+=+-54\"
\n" ); document.write( "\"b+=+2\"
\n" ); document.write( "and, since
\n" ); document.write( "(1) \"a+%2B+b+=+7\"
\n" ); document.write( "\"a+=+5\"
\n" ); document.write( "The original number is \"10b+%2B+a+\" = 25
\n" ); document.write( "check answer:
\n" ); document.write( "(2) \"10a+%2B+b+=+2%2A%2810b+%2B+a%29+%2B+2\"
\n" ); document.write( "(2) \"10%2A5+%2B+2+=+2%2A%2810%2A2+%2B+5%29+%2B+2\"
\n" ); document.write( "(2) \"52+=+2%2A25+%2B+2\"
\n" ); document.write( "(2) \"52+=+52\"
\n" ); document.write( "OK \r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );