document.write( "Question 408857: The function f (x) = 2x2 + 8x + c has a minimum value of −11.Find the value of
\n" ); document.write( "c
\n" ); document.write( "

Algebra.Com's Answer #287957 by nerdybill(7384)\"\" \"About 
You can put this solution on YOUR website!
given:
\n" ); document.write( "f(x) = 2x^2 + 8x + c
\n" ); document.write( "we know that it is a parabola that opens upwards (because of the positive coefficient associated with the x^2 term).
\n" ); document.write( "Therefore, the vertex gives you the minimum.
\n" ); document.write( ".
\n" ); document.write( "x-coordinate of minimum:
\n" ); document.write( "x = -b/(2a) = -8/(2*2) = -8/4 = -2
\n" ); document.write( ".
\n" ); document.write( "f(x) = 2x^2 + 8x + c
\n" ); document.write( "-11 = 2(-2)^2 + 8(-2) + c
\n" ); document.write( "-11 = 2(4) + (-16) + c
\n" ); document.write( "-11 = 8 - 16 + c
\n" ); document.write( "-11 = -8 + c
\n" ); document.write( "-3 = c
\n" ); document.write( "
\n" ); document.write( "
\n" );