document.write( "Question 408857: The function f (x) = 2x2 + 8x + c has a minimum value of −11.Find the value of
\n" );
document.write( "c \n" );
document.write( "
Algebra.Com's Answer #287957 by nerdybill(7384)![]() ![]() You can put this solution on YOUR website! given: \n" ); document.write( "f(x) = 2x^2 + 8x + c \n" ); document.write( "we know that it is a parabola that opens upwards (because of the positive coefficient associated with the x^2 term). \n" ); document.write( "Therefore, the vertex gives you the minimum. \n" ); document.write( ". \n" ); document.write( "x-coordinate of minimum: \n" ); document.write( "x = -b/(2a) = -8/(2*2) = -8/4 = -2 \n" ); document.write( ". \n" ); document.write( "f(x) = 2x^2 + 8x + c \n" ); document.write( "-11 = 2(-2)^2 + 8(-2) + c \n" ); document.write( "-11 = 2(4) + (-16) + c \n" ); document.write( "-11 = 8 - 16 + c \n" ); document.write( "-11 = -8 + c \n" ); document.write( "-3 = c \n" ); document.write( " \n" ); document.write( " |