document.write( "Question 407470: Write an equation that satifies set of conditions listed below.\r
\n" ); document.write( "\n" ); document.write( "A hyperbola with foci (0,-sqrt(6))and (0,sqrt(6))and asymptotes y=(sqrt(2)/2) and y=(-sqrt(2)/2)
\n" ); document.write( "

Algebra.Com's Answer #287499 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
Write an equation that satifies set of conditions listed below.A hyperbola with foci (0,-sqrt(6))and (0,sqrt(6))and asymptotes y=(sqrt(2)/2) and y=(-sqrt(2)/2)
\n" ); document.write( "..\r
\n" ); document.write( "\n" ); document.write( "y=(-sqrt(2)/2)=-1.414x/2
\n" ); document.write( "y=(sqrt(2)/2)=1.414x/2
\n" ); document.write( "..
\n" ); document.write( "given hyperbola has a vertical transverse axis,x=0. (hyperbola opens up and down)
\n" ); document.write( "Center is on this line between foci=(0,0)
\n" ); document.write( "Asymptotes=+-a/b=sqrt(2)/2
\n" ); document.write( "so,a=sqrt(2)
\n" ); document.write( "a^2=2
\n" ); document.write( "b=2
\n" ); document.write( "b^2=4
\n" ); document.write( "a and b also represent the legs of a right triangle in which c, the focal point is the hpotenuse.
\n" ); document.write( "c^2=a^2+b^2
\n" ); document.write( "c=sqrt(2+4)=sqrt(6)
\n" ); document.write( "Equation of the hyperbola:
\n" ); document.write( "y^2/2+x^2/4=1
\n" ); document.write( "The graph will look much like the graph below:
\n" ); document.write( "..
\n" ); document.write( "y=(((x^2)+4)/2)^.5
\n" ); document.write( "
\n" ); document.write( "
\n" );