document.write( "Question 407470: Write an equation that satifies set of conditions listed below.\r
\n" );
document.write( "\n" );
document.write( "A hyperbola with foci (0,-sqrt(6))and (0,sqrt(6))and asymptotes y=(sqrt(2)/2) and y=(-sqrt(2)/2) \n" );
document.write( "
Algebra.Com's Answer #287499 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! Write an equation that satifies set of conditions listed below.A hyperbola with foci (0,-sqrt(6))and (0,sqrt(6))and asymptotes y=(sqrt(2)/2) and y=(-sqrt(2)/2) \n" ); document.write( "..\r \n" ); document.write( "\n" ); document.write( "y=(-sqrt(2)/2)=-1.414x/2 \n" ); document.write( "y=(sqrt(2)/2)=1.414x/2 \n" ); document.write( ".. \n" ); document.write( "given hyperbola has a vertical transverse axis,x=0. (hyperbola opens up and down) \n" ); document.write( "Center is on this line between foci=(0,0) \n" ); document.write( "Asymptotes=+-a/b=sqrt(2)/2 \n" ); document.write( "so,a=sqrt(2) \n" ); document.write( "a^2=2 \n" ); document.write( "b=2 \n" ); document.write( "b^2=4 \n" ); document.write( "a and b also represent the legs of a right triangle in which c, the focal point is the hpotenuse. \n" ); document.write( "c^2=a^2+b^2 \n" ); document.write( "c=sqrt(2+4)=sqrt(6) \n" ); document.write( "Equation of the hyperbola: \n" ); document.write( "y^2/2+x^2/4=1 \n" ); document.write( "The graph will look much like the graph below: \n" ); document.write( ".. \n" ); document.write( "y=(((x^2)+4)/2)^.5 \n" ); document.write( " |