document.write( "Question 407894: Hi
\n" );
document.write( " Finding this difficult, new to this can someone please help\r
\n" );
document.write( "\n" );
document.write( "If z=2+j is one root of the equation z^4-2z^3-z^2+2z+10=0 find the other roots\r
\n" );
document.write( "\n" );
document.write( "Many Thanks
\n" );
document.write( "Karl \n" );
document.write( "
Algebra.Com's Answer #287422 by Edwin McCravy(20056)![]() ![]() You can put this solution on YOUR website! \r\n" ); document.write( "\r\n" ); document.write( "z=2+j is one root of the equation z4 - 2z³- z²+ 2z + 10 = 0\r\n" ); document.write( "\r\n" ); document.write( "We use synthetic division:\r\n" ); document.write( "\r\n" ); document.write( " 2+j|1 -2 -1 2 10\r\n" ); document.write( " | 2+j -1+2j -6+2j -10 \r\n" ); document.write( " 1 j -2+2j -4+2j 0\r\n" ); document.write( "\r\n" ); document.write( "So we have factored the polynomial as\r\n" ); document.write( "\r\n" ); document.write( " [z - (2+j)][z³+ jz²+ (-2+2j)z + (-4+2j)z] = 0\r\n" ); document.write( "\r\n" ); document.write( "Next we factor the cubic polynomial, since we know that if\r\n" ); document.write( "2+j is a root, its conjugate 2-j is also a root\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " 2-j|1 j -2+2j -4+2j\r\n" ); document.write( " | 2-j 4-2j 4-2j\r\n" ); document.write( " 1 2 2 0\r\n" ); document.write( "\r\n" ); document.write( "So we have now factored the polynomial as\r\n" ); document.write( "\r\n" ); document.write( " [z - (2+j)][z - (2-j)](z²+ 2z + 2) = 0\r\n" ); document.write( "\r\n" ); document.write( "We set each equal to 0\r\n" ); document.write( "\r\n" ); document.write( "Setting the first two factors = 0 just gives z = 2+j and z = 2-j.\r\n" ); document.write( "\r\n" ); document.write( "Setting the third factor = 0 gives\r\n" ); document.write( "\r\n" ); document.write( " z²+ 2z + 2 = 0\r\n" ); document.write( "\r\n" ); document.write( "\n" ); document.write( " |