document.write( "Question 407869: TWO PARALLEL CHORDS PQ AND MN ARE 3 cm APART ON THE SAME SIDE OF THE CIRCLE WHERE PQ=7 cm and MN = 14cm. CALCULATE THE RADIUS OF THE CIRCLE
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #287401 by MathLover1(20850)\"\" \"About 
You can put this solution on YOUR website!
Let \"MN\" and \"PQ\" be the parallel chords with \"O\" as \"center\" of the circle\r
\n" ); document.write( "\n" ); document.write( "given:\r
\n" ); document.write( "\n" ); document.write( "\"+MN=14cm\" and \"PQ=7cm\" with distance \"3cm\" between the parallel chords \"MN\" and \"PQ\". \r
\n" ); document.write( "\n" ); document.write( "Let \"X\" and \"Y\" be the \"mid\"\"+points\" of \"MN\" and \"PQ\". \r
\n" ); document.write( "\n" ); document.write( "Then \"OXY\" is a \"unique\" line which is the \"perpendicular\"\"+bisector\" to both \"MN\" and \"PQ\" \r
\n" ); document.write( "\n" ); document.write( "This is the theorem of the line joining the center of the circle and the mid point of the chord is perpendicular to the chord . \r
\n" ); document.write( "\n" ); document.write( "Or else, a line joining the center of the circle cuts chord perpendicularly, then it bisects the chord. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So, \"XN+=7cm\" and \"YQ+=+3.5cm\"\r
\n" ); document.write( "\n" ); document.write( "\"XY+=+3cm\" ..........given\r
\n" ); document.write( "\n" ); document.write( "\"XN+=7cm\" and \"YQ+=+3.5\" \r
\n" ); document.write( "\n" ); document.write( "Let \"OX+=+x\", \r
\n" ); document.write( "\n" ); document.write( "now from the right angled triangle, \"OXN\" , by Pythagoras theorem,\r
\n" ); document.write( "\n" ); document.write( "\"OX%5E2%2BXN%5E2+=+ON%5E2+=+r%5E2\", where \"r\" is the \"radius\" of the circle, \r
\n" ); document.write( "\n" ); document.write( "or\r
\n" ); document.write( "\n" ); document.write( "\"x%5E2+%2B+7%5E2+=+r%5E2\".........................(1)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Similarly from right triangle \"OYQ\",\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"OY%5E2%2BYQ%5E2=r%5E2\" or\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%283%2Bx%29%5E2%2B3.5%5E2+=+r%5E2\"...................(2).\r
\n" ); document.write( "\n" ); document.write( "From (1) and (2), left sides must be equal because right sides are equal:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%5E2%2B7%5E2=%28x%2B3%29%5E2%2B%283.5%29%5E2\".solve for \"x\" \r
\n" ); document.write( "\n" ); document.write( "\"x%5E2%2B49=x%5E2%2B6x%2B9%2B12.25\" \r
\n" ); document.write( "\n" ); document.write( "\"49-21.22+=+6x\" \r
\n" ); document.write( "\n" ); document.write( "\"6x+=+27.75\" \r
\n" ); document.write( "\n" ); document.write( "\"x=27.5%2F6+=+4.625+cm\". \r
\n" ); document.write( "\n" ); document.write( "Therefore, from(1).\r
\n" ); document.write( "\n" ); document.write( "\"%284.625%29%5E2%2B7%5E2+=+r%5E2\" \r
\n" ); document.write( "\n" ); document.write( "\"r+=+sqrt%28%284.625%29%5E2%2B7%5E2%29+=+8.380012097cm\"\r
\n" ); document.write( "\n" ); document.write( " \"r+=+8.38cm\" is the radius of the circle.\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );