document.write( "Question 407537: in the 1920 the record for a certain race was 46.3 sec. in 1930 it was 46.1sec. let R(t)= the record in the race and t= the number of years since 1920 .\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "a)find a linear function that finds the data
\n" );
document.write( "b)use the function in a) to predict the record in 2003 and 2006
\n" );
document.write( "c)find the year when the record will be 44.50 \n" );
document.write( "
Algebra.Com's Answer #287293 by graphmatics(170)![]() ![]() You can put this solution on YOUR website! The decrease in sec of race speed reduction of t years is, \n" ); document.write( "f(t) = (46.3-46.1)*(t/10) \n" ); document.write( "f(t) = 0.2*(t/10) \n" ); document.write( "f(t) = 0.2*t/10 \n" ); document.write( "f(t) = 0.2*t/10 \n" ); document.write( "___________________________________________________ \n" ); document.write( "so for 2003 \n" ); document.write( "f(2003-1930) = 0.2*((2003-1930)/10)) \n" ); document.write( "f(t) = 1.46 secs will be the decrease, so the record speed is \n" ); document.write( "46.3 - 1.46 = 44.84 \n" ); document.write( "___________________________________________________ \n" ); document.write( "To find the year when the record will be 44.50 \n" ); document.write( " 46.3 - f(t-1930) = 44.50 \n" ); document.write( " -f(t-1930) = 44.50 - 46.3 \n" ); document.write( " -f(t-1930) = -1.8 \n" ); document.write( " f(t-1939) = 1.8 \n" ); document.write( " 0.2*(t-1930)/10 = 1.8 \n" ); document.write( " 0.2*t = 18 + 0.2*1930 \n" ); document.write( " t = (18 + 386)/0.2 \n" ); document.write( " t = 2020 \n" ); document.write( " |