document.write( "Question 407310: Can someone please help?\r
\n" ); document.write( "\n" ); document.write( "factor the expression 81x^2-54xy+9y^2 into a product of binomials.
\n" ); document.write( "

Algebra.Com's Answer #287194 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "\"81x%5E2-54xy%2B9y%5E2\" Start with the given expression\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"9%289x%5E2-6xy%2By%5E2%29\" Factor out the GCF \"9\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's focus on the inner expression \"9x%5E2-6xy%2By%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at \"9x%5E2-6xy%2By%5E2\" we can see that the first term is \"9x%5E2\" and the last term is \"y%5E2\" where the coefficients are 9 and 1 respectively.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient 9 and the last coefficient 1 to get 9. Now what two numbers multiply to 9 and add to the middle coefficient -6? Let's list all of the factors of 9:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of 9:\r
\n" ); document.write( "\n" ); document.write( "1,3\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-1,-3 ...List the negative factors as well. This will allow us to find all possible combinations\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to 9\r
\n" ); document.write( "\n" ); document.write( "1*9\r
\n" ); document.write( "\n" ); document.write( "3*3\r
\n" ); document.write( "\n" ); document.write( "(-1)*(-9)\r
\n" ); document.write( "\n" ); document.write( "(-3)*(-3)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "note: remember two negative numbers multiplied together make a positive number\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now which of these pairs add to -6? Lets make a table of all of the pairs of factors we multiplied and see which two numbers add to -6\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
191+9=10
333+3=6
-1-9-1+(-9)=-10
-3-3-3+(-3)=-6
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From this list we can see that -3 and -3 add up to -6 and multiply to 9\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now looking at the expression \"9x%5E2-6xy%2By%5E2\", replace \"-6xy\" with \"-3xy-3xy\" (notice \"-3xy-3xy\" combines back to \"-6xy\". So it is equivalent to \"-6xy\")\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"9x%5E2%2Bhighlight%28-3xy-3xy%29%2By%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's factor \"9x%5E2-3xy-3xy%2By%5E2\" by grouping:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%289x%5E2-3xy%29%2B%28-3xy%2By%5E2%29\" Group like terms\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3x%283x-y%29-y%283x-y%29\" Factor out the GCF of \"3x\" out of the first group. Factor out the GCF of \"-y\" out of the second group\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%283x-y%29%283x-y%29\" Since we have a common term of \"3x-y\", we can combine like terms\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"9x%5E2-3xy-3xy%2By%5E2\" factors to \"%283x-y%29%283x-y%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So this also means that \"9x%5E2-6xy%2By%5E2\" factors to \"%283x-y%29%283x-y%29\" (since \"9x%5E2-6xy%2By%5E2\" is equivalent to \"9x%5E2-3xy-3xy%2By%5E2\")\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "note: \"%283x-y%29%283x-y%29\" is equivalent to \"%283x-y%29%5E2\" since the term \"3x-y\" occurs twice. So \"9x%5E2-6xy%2By%5E2\" also factors to \"%283x-y%29%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So our expression goes from \"9%289x%5E2-6xy%2By%5E2%29\" and factors further to \"9%283x-y%29%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------\r
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"81x%5E2-54xy%2B9y%5E2\" factors to \"9%283x-y%29%5E2\"\r
\n" ); document.write( "\n" ); document.write( " \r
\n" ); document.write( "\n" ); document.write( "If you need more help, email me at jim_thompson5910@hotmail.com\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Also, please consider visiting my website: http://www.freewebs.com/jimthompson5910/home.html and making a donation. Thank you\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Jim
\n" ); document.write( "
\n" );