document.write( "Question 405450: Find the EXACT value of csc 495 degrees using reference angles. \n" ); document.write( "
Algebra.Com's Answer #286363 by Edwin McCravy(20059)\"\" \"About 
You can put this solution on YOUR website!
\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "The angle 495° is more than one complete revolution counter-clockwise\r\n" );
document.write( "from the right side of the x-axis.  So we subtract 1 revolution or\r\n" );
document.write( "360° from 495° getting 135°.  So we can forget the first revolution.\r\n" );
document.write( "We now have just this:\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Next we see that 135° is in the second quadrant. Let's indicate the \r\n" );
document.write( "reference angle in red, which is the smallest possible amout of \r\n" );
document.write( "rotation to get to the x-axis from the terminal side:\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "We subtract 135° from 180° to get 45°, which is the reference angle\r\n" );
document.write( "indicated by the red arc.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now we remember our 45°-45°-90° right triangle:\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The cosecant is the hypotenuse over the opposite which\r\n" );
document.write( "is \"sqrt%282%29%2F1\" or just \"sqrt%282%29\".  We remember that\r\n" );
document.write( "angles in the second quadrant have positive sines and cosecants,\r\n" );
document.write( "so the answer is\r\n" );
document.write( "               _\r\n" );
document.write( "csc(495°) = +Ö2\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );