document.write( "Question 403095: A norman window has the shape of a rectangle surmounted by a semicircle of a diameter equal to the width of the rectangle. If the permimeter of the window is 20 feet, what dimensions will admit the most light (maximize the area)? \n" ); document.write( "
Algebra.Com's Answer #285137 by solver91311(24713)![]() ![]() You can put this solution on YOUR website! \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Let \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The perimeter of the window is then:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "But we are given that the perimeter is 20 feet, so:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Solve for \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The area of the window is:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Substitute to create a function for area in terms of \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Simplify:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Two ways to go from here:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Algebra Method\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "This is a quadratic with a negative lead coefficient, hence the graph is a parabola that opens downward. That means the vertex is a maximum. Recall that the vertex of \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "For this problem:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "and a little arithmetic gets us to:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "And the radius of the semi-circle is then:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Calculus Method\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "This is a 2nd degree polynomial equation, hence continuous and twice differentiable over the real numbers. Therefore there will be a local extremum at any point where the first derivative is equal to zero and that point will be a maximum if the 2nd derivative is negative at that point.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Hence \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "is the \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "John \n" ); document.write( " \n" ); document.write( "My calculator said it, I believe it, that settles it \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " |