document.write( "Question 401658: find the equation of the parabola With the vertex on the y axis, axis of symmetry parallel to the x axis, and passes through (2, 2), (8,-1) \n" ); document.write( "
Algebra.Com's Answer #284277 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! find the equation of the parabola With the vertex on the y axis, axis of symmetry parallel to the x axis, and passes through (2, 2), (8,-1) \n" ); document.write( "---- \n" ); document.write( "If vertex on y-axis it passes through (0,y) \n" ); document.write( "If axis of symmetry parallel to x-axis it passes thru \n" ); document.write( "--- \n" ); document.write( "Form of equation: y = a(x-h)^2+k \n" ); document.write( "(0,y) implies y = a(x)^2+k \n" ); document.write( "(2,2) implies 2 = a(2)^2+k = 4a+k \n" ); document.write( "(8,-1) implies -1 = a(8)^2+k = 64a+k \n" ); document.write( "--- \n" ); document.write( "Solve the system: \n" ); document.write( "4a+k = 2 \n" ); document.write( "64a+k = -1 \n" ); document.write( "--- \n" ); document.write( "Subtract top from bottom to get: \n" ); document.write( "60a = -3 \n" ); document.write( "a = -1/20 \n" ); document.write( "--- \n" ); document.write( "Solve for \"k\": \n" ); document.write( "4a+k = 2 \n" ); document.write( "4(-1/20) + k = 2 \n" ); document.write( "(-1/5) + k = 2 \n" ); document.write( "k = 11/5 \n" ); document.write( "-------------------- \n" ); document.write( "Equation: \n" ); document.write( "y = (-1/20)x^2 + (11/5) \n" ); document.write( "============================= \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( " |