document.write( "Question 401556: Topic: Maxima and Minima for functions of 2 variables:\r
\n" ); document.write( "\n" ); document.write( "Question: Find the critical points of the question below by determining whether it is a saddle point, relative maximum or minimum:
\n" ); document.write( "f(x,y) = xy(1-x-y)\r
\n" ); document.write( "\n" ); document.write( "Thank-you for your assistance.
\n" ); document.write( "

Algebra.Com's Answer #284236 by robertb(5830)\"\" \"About 
You can put this solution on YOUR website!
\"f%28x%2Cy%29+=+xy%281-x-y%29+++=+xy+-+x%5E2y-xy%5E2\"\r
\n" ); document.write( "\n" ); document.write( "==> \"f%5Bx%5D+=+y-2xy+-+y%5E2+=+y%281-2x-y%29+=+0\", and
\n" ); document.write( "\"f%5By%5D+=+x-2xy+-+x%5E2+=+x%281-x-2y%29+=+0\".
\n" ); document.write( "Solving the preceding system above, we get the following c.p.'s
\n" ); document.write( "(i) (0,0)
\n" ); document.write( "{ii) (1,0)
\n" ); document.write( "(iii) (0,1)
\n" ); document.write( "(iv) (1/3, 1/3)
\n" ); document.write( "Finding the 2nd order partial derivatives:
\n" ); document.write( "\"f%5Bxx%5D+=+-2y\"
\n" ); document.write( "\"f%5Byy%5D+=+-2x\", and
\n" ); document.write( "\"f%5Bxy%5D+=+1-2x+-+2y+=+f%5Byx%5D\"
\n" ); document.write( "(i) At (0,0), \"f%5Bxx%5D+=+0\"
\n" ); document.write( "\"f%5Byy%5D+=+0\", and \"f%5Bxy%5D+=+1\"
\n" ); document.write( "D = \"f%5Bxx%5D%2A+f%5Byy%5D+-+%28f%5Bxy%5D%29%5E2+=+0+%2A+0+-+1+=+-1+%3C+0\".
\n" ); document.write( "Therefore there is a saddle point at (0,0).\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "(ii) At (1,0), \"f%5Bxx%5D+=+0\"
\n" ); document.write( "\"f%5Byy%5D+=+-2\", and \"f%5Bxy%5D+=+-1\"
\n" ); document.write( "D = \"f%5Bxx%5D%2A+f%5Byy%5D+-+%28f%5Bxy%5D%29%5E2+=+0+%2A+-2++-+1+=+-1+%3C+0\".
\n" ); document.write( "Therefore there is a saddle point at (1,0)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "(iii) At (0,1), \"f%5Bxx%5D+=+-2\"
\n" ); document.write( "\"f%5Byy%5D+=+0\", and \"f%5Bxy%5D+=+-1\"
\n" ); document.write( "D = \"f%5Bxx%5D%2A+f%5Byy%5D+-+%28f%5Bxy%5D%29%5E2+=+-2+%2A+0+-+1+=+-1+%3C+0\".
\n" ); document.write( "Therefore there is saddle point at (0,1).\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "(iv) At (1/3, 1/3), \"f%5Bxx%5D=+-2%2F3\"
\n" ); document.write( "\"f%5Byy%5D+=+-2%2F3\", and \"f%5Bxy%5D+=+-1%2F3\"
\n" ); document.write( "D = .
\n" ); document.write( "Therefore there is a relative maximum at (1/3, 1/3).\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );