document.write( "Question 399586: f(x) = −2x^2− 4x + 15 please do step by step so i can understand\r
\n" ); document.write( "\n" ); document.write( "1.Express the quadratic function in standard form. how did you get the numbers
\n" ); document.write( " F(x)=\r
\n" ); document.write( "\n" ); document.write( "2.vertex (x, y) = how did you get the numbers\r
\n" ); document.write( "\n" ); document.write( "3.x-intercepts (x, y) = Small value)\r
\n" ); document.write( "\n" ); document.write( "4.(x, y) = larger value)\r
\n" ); document.write( "\n" ); document.write( "5.y-intercept (x, y) = \r
\n" ); document.write( "\n" ); document.write( "graph and where do the numbers meet???\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Thank you soo much...
\n" ); document.write( "

Algebra.Com's Answer #282965 by edjones(8007)\"\" \"About 
You can put this solution on YOUR website!
f(x)= −2x^2− 4x + 15
\n" ); document.write( ".
\n" ); document.write( "y intercept, when x=0 is 15
\n" ); document.write( ".
\n" ); document.write( "x intercepts when y=0:
\n" ); document.write( "x=(-2-sqrt(34))/2, x=(-2+sqrt(34))/2 See below.
\n" ); document.write( ".
\n" ); document.write( "f(x)=a(x-h)^2+k the standard form. The vertex is the point (h,k)=-2(x^2+2x)+15
\n" ); document.write( "=-2(x^2+2x+1-1)+15 completing the square
\n" ); document.write( "=-2(x^2+2x+1)+2+15
\n" ); document.write( "=-2(x+1)^2+17 the standard form.
\n" ); document.write( "a=-2, h=-1, k=17
\n" ); document.write( ".
\n" ); document.write( "(-1, 17) vertex.
\n" ); document.write( ".
\n" ); document.write( "Ed
\n" ); document.write( ".
\n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
Solved by pluggable solver: SOLVE quadratic equation with variable
Quadratic equation \"ax%5E2%2Bbx%2Bc=0\" (in our case \"-2x%5E2%2B-4x%2B15+=+0\") has the following solutons:
\n" ); document.write( "
\n" ); document.write( " \"x%5B12%5D+=+%28b%2B-sqrt%28+b%5E2-4ac+%29%29%2F2%5Ca\"
\n" ); document.write( "
\n" ); document.write( " For these solutions to exist, the discriminant \"b%5E2-4ac\" should not be a negative number.
\n" ); document.write( "
\n" ); document.write( " First, we need to compute the discriminant \"b%5E2-4ac\": \"b%5E2-4ac=%28-4%29%5E2-4%2A-2%2A15=136\".
\n" ); document.write( "
\n" ); document.write( " Discriminant d=136 is greater than zero. That means that there are two solutions: \"+x%5B12%5D+=+%28--4%2B-sqrt%28+136+%29%29%2F2%5Ca\".
\n" ); document.write( "
\n" ); document.write( " \"x%5B1%5D+=+%28-%28-4%29%2Bsqrt%28+136+%29%29%2F2%5C-2+=+-3.91547594742265\"
\n" ); document.write( " \"x%5B2%5D+=+%28-%28-4%29-sqrt%28+136+%29%29%2F2%5C-2+=+1.91547594742265\"
\n" ); document.write( "
\n" ); document.write( " Quadratic expression \"-2x%5E2%2B-4x%2B15\" can be factored:
\n" ); document.write( " \"-2x%5E2%2B-4x%2B15+=+-2%28x--3.91547594742265%29%2A%28x-1.91547594742265%29\"
\n" ); document.write( " Again, the answer is: -3.91547594742265, 1.91547594742265.\n" ); document.write( "Here's your graph:
\n" ); document.write( "\"graph%28+500%2C+500%2C+-10%2C+10%2C+-20%2C+20%2C+-2%2Ax%5E2%2B-4%2Ax%2B15+%29\"

\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );