document.write( "Question 392558: help please and thank you\r
\n" ); document.write( "\n" ); document.write( "simplify by removing factors of 1\r
\n" ); document.write( "\n" ); document.write( " (x^2-64)/(8-x)
\n" ); document.write( "

Algebra.Com's Answer #278618 by haileytucki(390)\"\" \"About 
You can put this solution on YOUR website!
(x^(2)-64)/(8-x)\r
\n" ); document.write( "\n" ); document.write( "The binomial can be factored using the difference of squares formula, because both terms are perfect squares. The difference of squares formula is a^(2)-b^(2)=(a-b)(a+b).
\n" ); document.write( "((x-8)(x+8))/(-x+8)\r
\n" ); document.write( "\n" ); document.write( "Factor the expression.
\n" ); document.write( "((-1)(-x+8)(x+8))/(-x+8)\r
\n" ); document.write( "\n" ); document.write( "Reduce the expression by canceling out the common factor of (x-8) from the numerator and denominator.
\n" ); document.write( "((-1)(x-8)(x+8))/(-x+8)\r
\n" ); document.write( "\n" ); document.write( "Reduce the expression by canceling out the common factor of (x-8) from the numerator and denominator.
\n" ); document.write( "(-1)(x+8)\r
\n" ); document.write( "\n" ); document.write( "Multiply each term in the first polynomial by each term in the second polynomial.
\n" ); document.write( "(-1*x-1*8)\r
\n" ); document.write( "\n" ); document.write( "Multiply -1 by each term in x+8 to get -x-8.
\n" ); document.write( "(-x-8)\r
\n" ); document.write( "\n" ); document.write( "Remove the parentheses around the expression -x-8.
\n" ); document.write( "-x-8
\n" ); document.write( "
\n" );