document.write( "Question 392503: 4x2 - 4x + 3 = 0 \n" ); document.write( "
Algebra.Com's Answer #278615 by haileytucki(390)\"\" \"About 
You can put this solution on YOUR website!
~= square root and \= +-\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "4x^(2)-4x+3=0\r
\n" ); document.write( "\n" ); document.write( "Use the quadratic formula to find the solutions. In this case, the values are a=4, b=-4, and c=3.
\n" ); document.write( "x=(-b\~(b^(2)-4ac))/(2a) where ax^(2)+bx+c=0\r
\n" ); document.write( "\n" ); document.write( "Use the standard form of the equation to find a, b, and c for this quadratic.
\n" ); document.write( "a=4, b=-4, and c=3\r
\n" ); document.write( "\n" ); document.write( "Substitute in the values of a=4, b=-4, and c=3.
\n" ); document.write( "x=(-(-4)\~((-4)^(2)-4(4)(3)))/(2(4))\r
\n" ); document.write( "\n" ); document.write( "Multiply -1 by each term inside the parentheses.
\n" ); document.write( "x=(4\~((-4)^(2)-4(4)(3)))/(2(4))\r
\n" ); document.write( "\n" ); document.write( "Simplify the section inside the radical.
\n" ); document.write( "x=(4\4i~(2))/(2(4))\r
\n" ); document.write( "\n" ); document.write( "Simplify the denominator of the quadratic formula.
\n" ); document.write( "x=(4\4i~(2))/(8)\r
\n" ); document.write( "\n" ); document.write( "First, solve the + portion of \.
\n" ); document.write( "x=(4+4i~(2))/(8)\r
\n" ); document.write( "\n" ); document.write( "Simplify the expression to solve for the + portion of the \.
\n" ); document.write( "x=(1+i~(2))/(2)\r
\n" ); document.write( "\n" ); document.write( "Next, solve the - portion of \.
\n" ); document.write( "x=(4-4i~(2))/(8)\r
\n" ); document.write( "\n" ); document.write( "Simplify the expression to solve for the - portion of the \.
\n" ); document.write( "x=(1-i~(2))/(2)\r
\n" ); document.write( "\n" ); document.write( "The final answer is the combination of both solutions.
\n" ); document.write( "x=(1+i~(2))/(2),(1-i~(2))/(2)
\n" ); document.write( "
\n" );