document.write( "Question 390094: how do I graph these two equations ? (x^2-12x+84=y^2+16y) , (x^2+y^2=4x+9) ? (ie, simplify, get center/radius) \n" ); document.write( "
Algebra.Com's Answer #278316 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! If you want to simply graph these two equations, solve for y then plot it manually or on a graphing calculator.\r \n" ); document.write( "\n" ); document.write( "given: x^2-12x+84=y^2+16y \n" ); document.write( "complete the square \n" ); document.write( "x^2-12x+36-( y^2+16x+64)=-84+36-64=-112 \n" ); document.write( "(x-6)^2-(y+8)^2=-112 \n" ); document.write( "multiply by (-1) \n" ); document.write( "(y+8)^2-(x-6)^2=112 \n" ); document.write( "(y+8)^2/112 + (x-6)^2/112 = 1 \n" ); document.write( "This is a hyperbola with center at (6,-8), and transverse axis in the vertical direction.\r \n" ); document.write( "\n" ); document.write( "solving for y \n" ); document.write( "(y+8)^2 = 112+(x-6)^2 = 112+x^2-12x+36 \n" ); document.write( "y+8 =sqrt( 112+x^2-12x+36) =( 112+x^2-12x+36)^.5 \n" ); document.write( "y=-8+( 112+x^2-12x+36)^.5, and -8-( 112+x^2-12x+36)^.5 \n" ); document.write( "The first expression will graph the top half of the hyperbola and the second, the bottom half\r \n" ); document.write( "\n" ); document.write( "Now, for the other given equation, x^2+y^2=4x+9 \n" ); document.write( "complete the square \n" ); document.write( "x^2-4x+4+y^2 = 9+4=13 \n" ); document.write( "(x-2)^2+y^2 = 13 \n" ); document.write( "This is a circle with center at (2,0) with radius sqrt(13) \n" ); document.write( "solving for y \n" ); document.write( "y^2 = 13-(x-2)^2=13-x^2+4x-4 \n" ); document.write( "y = ħsqrt(13-x^2+4x-4) or ħ(13-x^2+4x-4)^.5 \n" ); document.write( "The first (+)expression will graph the top half of the circle and the second(-), the bottom half \n" ); document.write( "The following graph will give you some idea what the curves look like. \n" ); document.write( " |