document.write( "Question 391299: write the function f(x)=4x^2-48x-141 in vertex form, and identify its vertex
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #277586 by haileytucki(390)![]() ![]() You can put this solution on YOUR website! f(x)=4x^(2)-48x-141\r \n" ); document.write( "\n" ); document.write( "Replace f(x) with y to find the properties of the parabola. \n" ); document.write( "y=4x^(2)-48x-141\r \n" ); document.write( "\n" ); document.write( "To create a trinomial square on the left-hand side of the equation, add a value to both sides of the equation that is equal to the square of half the coefficient of x. In this problem, add (-6)^(2) to both sides of the equation. \n" ); document.write( "y=4(x^(2)-12x+36)+4(-(141)/(4))-(4)(0+36)\r \n" ); document.write( "\n" ); document.write( "Remove the 0 from the polynomial; adding or subtracting 0 does not change the value of the expression. \n" ); document.write( "y=4(x^(2)-12x+36)+4(-(141)/(4))-(4)(36)\r \n" ); document.write( "\n" ); document.write( "Factor the perfect trinomial square into (x-6)^(2). \n" ); document.write( "y=4((x-6)^(2))+4(-(141)/(4))-(4)(36)\r \n" ); document.write( "\n" ); document.write( "Factor the perfect trinomial square into (x-6)^(2). \n" ); document.write( "y=4(x-6)^(2)+4(-(141)/(4))-(4)(36)\r \n" ); document.write( "\n" ); document.write( "Multiply 4 by each term inside the parentheses. \n" ); document.write( "y=4(x-6)^(2)-141-(4)(36)\r \n" ); document.write( "\n" ); document.write( "Multiply 4 by 36 to get 144. \n" ); document.write( "y=4(x-6)^(2)-141-(144)\r \n" ); document.write( "\n" ); document.write( "Multiply -1 by the 144 inside the parentheses. \n" ); document.write( "y=4(x-6)^(2)-141-144\r \n" ); document.write( "\n" ); document.write( "Subtract 144 from -141 to get -285. \n" ); document.write( "y=4(x-6)^(2)-285\r \n" ); document.write( "\n" ); document.write( "This is the form of a paraboloa. Use this form to determine the values used to find vertex and x-y intercepts. \n" ); document.write( "y=a(x-h)^(2)+k\r \n" ); document.write( "\n" ); document.write( "Use the standard form to determine the vertex and x-y intercepts. \n" ); document.write( "a=4_k=-285_h=6\r \n" ); document.write( "\n" ); document.write( "The vertex of a parabola is (h,k). \n" ); document.write( "Vertex: (6,-285) \n" ); document.write( " |