document.write( "Question 391288: (36^2a^3/b^2)^1/4(8a^3/b^-2)^1/3 \n" ); document.write( "
Algebra.Com's Answer #277577 by haileytucki(390)![]() ![]() You can put this solution on YOUR website! ((36^(2)a^(3))/(b^(2)))^((1)/(4))*((8a^(3))/(b^(-2)))^((1)/(3))\r \n" ); document.write( "\n" ); document.write( "Squaring a number is the same as multiplying the number by itself (36*36). In this case, 36 squared is 1296. \n" ); document.write( "((1296a^(3))/(b^(2)))^((1)/(4))*((8a^(3))/(b^(-2)))^((1)/(3))\r \n" ); document.write( "\n" ); document.write( "Expand the exponent (((1)/(4))) to the expression. \n" ); document.write( "(1296^((1)/(4))a^(3*((1)/(4))))/((b^(2))^((1)/(4)))*((8a^(3))/(b^(-2)))^((1)/(3))\r \n" ); document.write( "\n" ); document.write( "Expand the exponent (((1)/(4))) to the expression. \n" ); document.write( "(1296^((1)/(4))a^(3*((1)/(4))))/(b^(2*((1)/(4))))*((8a^(3))/(b^(-2)))^((1)/(3))\r \n" ); document.write( "\n" ); document.write( "Multiply 3 by each term inside the parentheses. \n" ); document.write( "(1296^((1)/(4))a^((3)/(4)))/(b^(2*((1)/(4))))*((8a^(3))/(b^(-2)))^((1)/(3))\r \n" ); document.write( "\n" ); document.write( "Multiply 2 by each term inside the parentheses. \n" ); document.write( "(1296^((1)/(4))a^((3)/(4)))/(b^((1)/(2)))*((8a^(3))/(b^(-2)))^((1)/(3))\r \n" ); document.write( "\n" ); document.write( "An expression with a fractional exponent can be written as a radical with an index equal to the denominator of the exponent. \n" ); document.write( "((~4:(1296))*a^((3)/(4)))/(b^((1)/(2)))*((8a^(3))/(b^(-2)))^((1)/(3))\r \n" ); document.write( "\n" ); document.write( "Pull all perfect 4th roots out from under the radical. In this case, remove the 6 because it is a perfect 4th. \n" ); document.write( "((6)*a^((3)/(4)))/(b^((1)/(2)))*((8a^(3))/(b^(-2)))^((1)/(3))\r \n" ); document.write( "\n" ); document.write( "Multiply (6) by a^((3)/(4)) to get a^((3)/(4))(6). \n" ); document.write( "(a^((3)/(4))(6))/(b^((1)/(2)))*((8a^(3))/(b^(-2)))^((1)/(3))\r \n" ); document.write( "\n" ); document.write( "Multiply a^((3)/(4)) by each term inside the parentheses. \n" ); document.write( "(6a^((3)/(4)))/(b^((1)/(2)))*((8a^(3))/(b^(-2)))^((1)/(3))\r \n" ); document.write( "\n" ); document.write( "Move all negative exponents from the denominator to the numerator and make the exponents positive. A negative exponent follows the rule: a^(-n)=(1)/(a^(n)). \n" ); document.write( "(6a^((3)/(4)))/(b^((1)/(2)))*(8a^(3)(b^(2)))^((1)/(3))\r \n" ); document.write( "\n" ); document.write( "Multiply out the values in the numerator and denominator to remove the parentheses in the expression. \n" ); document.write( "(6a^((3)/(4)))/(b^((1)/(2)))*(8a^(3)b^(2))^((1)/(3))\r \n" ); document.write( "\n" ); document.write( "Expand the exponent (((1)/(3))) to the expression. \n" ); document.write( "(6a^((3)/(4)))/(b^((1)/(2)))*8^((1)/(3))a^(3*((1)/(3)))b^(2*((1)/(3)))\r \n" ); document.write( "\n" ); document.write( "Multiply 3 by each term inside the parentheses. \n" ); document.write( "(6a^((3)/(4)))/(b^((1)/(2)))*8^((1)/(3))ab^(2*((1)/(3)))\r \n" ); document.write( "\n" ); document.write( "Multiply 2 by each term inside the parentheses. \n" ); document.write( "(6a^((3)/(4)))/(b^((1)/(2)))*8^((1)/(3))ab^((2)/(3))\r \n" ); document.write( "\n" ); document.write( "An expression with a fractional exponent can be written as a radical with an index equal to the denominator of the exponent. \n" ); document.write( "(6a^((3)/(4)))/(b^((1)/(2)))*((~3:(8))*ab^((2)/(3)))\r \n" ); document.write( "\n" ); document.write( "Pull all perfect cube roots out from under the radical. In this case, remove the 2 because it is a perfect cube. \n" ); document.write( "(6a^((3)/(4)))/(b^((1)/(2)))*((2)*ab^((2)/(3)))\r \n" ); document.write( "\n" ); document.write( "Multiply (2) by ab^((2)/(3)) to get ab^((2)/(3))(2). \n" ); document.write( "(6a^((3)/(4)))/(b^((1)/(2)))*(ab^((2)/(3))(2))\r \n" ); document.write( "\n" ); document.write( "Multiply ab^((2)/(3)) by each term inside the parentheses. \n" ); document.write( "(6a^((3)/(4)))/(b^((1)/(2)))*2ab^((2)/(3))\r \n" ); document.write( "\n" ); document.write( "Multiply (6a^((3)/(4)))/(b^((1)/(2))) by 2ab^((2)/(3)) to get (12a^((7)/(4))b^((2)/(3)))/(b^((1)/(2))). \n" ); document.write( "(12a^((7)/(4))b^((2)/(3)))/(b^((1)/(2)))\r \n" ); document.write( "\n" ); document.write( "Reduce the exponents of b by subtracting the denominator exponents from the numerator exponents. \n" ); document.write( "12a^((7)/(4))b^(((2)/(3))-((1)/(2)))\r \n" ); document.write( "\n" ); document.write( "Multiply -1 by each term inside the parentheses. \n" ); document.write( "12a^((7)/(4))b^((2)/(3)-(1)/(2))\r \n" ); document.write( "\n" ); document.write( "Combine -(1)/(2)+(2)/(3) into a single expression by finding the least common denominator (LCD). The LCD of -(1)/(2)+(2)/(3) is 6. \n" ); document.write( "12a^((7)/(4))b^((1)/(6)) \n" ); document.write( " |