document.write( "Question 391122: how do i find all the important information(vertex, co vertices ect.) to
\n" );
document.write( "(x-2)2 + (y-2)2 = 1
\n" );
document.write( "_____ _______
\n" );
document.write( " 16 4 \n" );
document.write( "
Algebra.Com's Answer #277441 by haileytucki(390)![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "/= + - and ~= square root\r \n" ); document.write( "\n" ); document.write( "((x-2)^(2))/(16)+((y-2)^(2))/(4)=1\r \n" ); document.write( "\n" ); document.write( "Multiply each term by a factor of 1 that will equate all the denominators. In this case, all terms need a denominator of 16. The ((y-2)^(2))/(4) expression needs to be multiplied by ((4))/((4)) to make the denominator 16. \n" ); document.write( "((x-2)^(2))/(16)+((y-2)^(2))/(4)*(4)/(4)=1\r \n" ); document.write( "\n" ); document.write( "Multiply the expression by a factor of 1 to create the least common denominator (LCD) of 16. \n" ); document.write( "((x-2)^(2))/(16)+((y-2)^(2)(4))/(16)=1\r \n" ); document.write( "\n" ); document.write( "The numerators of expressions that have equal denominators can be combined. In this case, ((x-2)^(2))/(16) and (((y-2)^(2)(4)))/(16) have the same denominator of 16, so the numerators can be combined. \n" ); document.write( "((x-2)^(2)+((y-2)^(2)(4)))/(16)=1\r \n" ); document.write( "\n" ); document.write( "Simplify the numerator of the expression. \n" ); document.write( "(x^(2)-4x+4y^(2)-16y+20)/(16)=1\r \n" ); document.write( "\n" ); document.write( "Multiply each term in the equation by 16. \n" ); document.write( "(x^(2)-4x+4y^(2)-16y+20)/(16)*16=1*16\r \n" ); document.write( "\n" ); document.write( "Simplify the left-hand side of the equation by canceling the common factors. \n" ); document.write( "x^(2)-4x+4y^(2)-16y+20=1*16\r \n" ); document.write( "\n" ); document.write( "Multiply 1 by 16 to get 16. \n" ); document.write( "x^(2)-4x+4y^(2)-16y+20=16\r \n" ); document.write( "\n" ); document.write( "To set the left-hand side of the equation equal to 0, move all the expressions to the left-hand side. \n" ); document.write( "x^(2)-4x+4y^(2)-16y+4=0\r \n" ); document.write( "\n" ); document.write( "Use the quadratic formula to find the solutions. In this case, the values are a=1, b=-4, and c=4y^(2)-16y. \n" ); document.write( "x=(-b\~(b^(2)-4ac))/(2a) where ax^(2)+bx+c=0\r \n" ); document.write( "\n" ); document.write( "Use the standard form of the equation to find a, b, and c for this quadratic. \n" ); document.write( "a=1, b=-4, and c=4y^(2)-16y\r \n" ); document.write( "\n" ); document.write( "Substitute in the values of a=1, b=-4, and c=4y^(2)-16y. \n" ); document.write( "x=(-(-4)\~((-4)^(2)-4(1)(4y^(2)-16y)))/(2(1))\r \n" ); document.write( "\n" ); document.write( "Multiply -1 by each term inside the parentheses. \n" ); document.write( "x=(4\~((-4)^(2)-4(1)(4y^(2)-16y)))/(2(1))\r \n" ); document.write( "\n" ); document.write( "Simplify the section inside the radical. \n" ); document.write( "x=(4\4~(-1(y^(2)-4y-1)))/(2(1))\r \n" ); document.write( "\n" ); document.write( "Simplify the denominator of the quadratic formula. \n" ); document.write( "x=(4\4~(-1(y^(2)-4y-1)))/(2)\r \n" ); document.write( "\n" ); document.write( "First, solve the + portion of \. \n" ); document.write( "x=(4+4~(-1(y^(2)-4y-1)))/(2)\r \n" ); document.write( "\n" ); document.write( "Simplify the expression to solve for the + portion of the \. \n" ); document.write( "x=2+2~(-1(y^(2)-4y-1))\r \n" ); document.write( "\n" ); document.write( "Next, solve the - portion of \. \n" ); document.write( "x=(4-4~(-1(y^(2)-4y-1)))/(2)\r \n" ); document.write( "\n" ); document.write( "Simplify the expression to solve for the - portion of the \. \n" ); document.write( "x=2-2~(-1(y^(2)-4y-1))\r \n" ); document.write( "\n" ); document.write( "The final answer is the combination of both solutions. \n" ); document.write( "x=2+2~(-1(y^(2)-4y-1)),2-2~(-1(y^(2)-4y-1))\r \n" ); document.write( "\n" ); document.write( "The domain of an expression is all real numbers except for the regions where the expression is undefined. This can occur where the denominator equals 0, a square root is less than 0, or a logarithm is less than or equal to 0. All of these are undefined and therefore are not part of the domain. \n" ); document.write( "(-1(y^(2)-4y-1))<0\r \n" ); document.write( "\n" ); document.write( "Solve the equation to find where the original expression is undefined. \n" ); document.write( "y<2-~(5) or y>2+~(5)\r \n" ); document.write( "\n" ); document.write( "The domain of the rational expression is all real numbers except where the expression is undefined. \n" ); document.write( "2-~(5) \n" ); document.write( "Range: 2-~(5) \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now, finding the x and y intercepts:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "((x-2)^(2))/(16)+((y-2)^(2))/(4)=1\r \n" ); document.write( "\n" ); document.write( "To find the x-intercept, substitute in 0 for y and solve for x. \n" ); document.write( "((x-2)^(2))/(16)+(((0)-2)^(2))/(4)=1\r \n" ); document.write( "\n" ); document.write( "Remove the parentheses around the expression 0.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "((x-2)^(2))/(16)+((0-2)^(2))/(4)=1\r \n" ); document.write( "\n" ); document.write( "Combine all similar expressions. \n" ); document.write( "((x-2)^(2))/(16)+((-2)^(2))/(4)=1\r \n" ); document.write( "\n" ); document.write( "Squaring an expression is the same as multiplying the expression by itself 2 times. \n" ); document.write( "((x-2)^(2))/(16)+((-2)(-2))/(4)=1\r \n" ); document.write( "\n" ); document.write( "Multiply -2 by -2 to get 4. \n" ); document.write( "((x-2)^(2))/(16)+(4)/(4)=1\r \n" ); document.write( "\n" ); document.write( "Reduce the expression (4)/(4) by removing a factor of 4 from the numerator and denominator. \n" ); document.write( "((x-2)^(2))/(16)+1=1\r \n" ); document.write( "\n" ); document.write( "Multiply each term by a factor of 1 that will equate all the denominators. In this case, all terms need a denominator of 16. \n" ); document.write( "((x-2)^(2))/(16)+1*(16)/(16)=1\r \n" ); document.write( "\n" ); document.write( "Multiply the expression by a factor of 1 to create the least common denominator (LCD) of 16. \n" ); document.write( "((x-2)^(2))/(16)+(1*16)/(16)=1\r \n" ); document.write( "\n" ); document.write( "Multiply 1 by 16 to get 16. \n" ); document.write( "((x-2)^(2))/(16)+(16)/(16)=1\r \n" ); document.write( "\n" ); document.write( "The numerators of expressions that have equal denominators can be combined. In this case, ((x-2)^(2))/(16) and ((16))/(16) have the same denominator of 16, so the numerators can be combined. \n" ); document.write( "((x-2)^(2)+(16))/(16)=1\r \n" ); document.write( "\n" ); document.write( "Simplify the numerator of the expression. \n" ); document.write( "(x^(2)-4x+20)/(16)=1\r \n" ); document.write( "\n" ); document.write( "Multiply each term in the equation by 16. \n" ); document.write( "(x^(2)-4x+20)/(16)*16=1*16\r \n" ); document.write( "\n" ); document.write( "Simplify the left-hand side of the equation by canceling the common factors. \n" ); document.write( "x^(2)-4x+20=1*16\r \n" ); document.write( "\n" ); document.write( "Multiply 1 by 16 to get 16. \n" ); document.write( "x^(2)-4x+20=16\r \n" ); document.write( "\n" ); document.write( "To set the left-hand side of the equation equal to 0, move all the expressions to the left-hand side. \n" ); document.write( "x^(2)-4x+4=0\r \n" ); document.write( "\n" ); document.write( "In this problem -2*-2=4 and -2-2=-4, so insert -2 as the right hand term of one factor and -2 as the right-hand term of the other factor. \n" ); document.write( "(x-2)(x-2)=0\r \n" ); document.write( "\n" ); document.write( "Combine the two common factors of (x-2) by adding the exponents. \n" ); document.write( "(x-2)^(2)=0\r \n" ); document.write( "\n" ); document.write( "Set each of the factors of the left-hand side of the equation equal to 0. \n" ); document.write( "x-2=0\r \n" ); document.write( "\n" ); document.write( "Since -2 does not contain the variable to solve for, move it to the right-hand side of the equation by adding 2 to both sides. \n" ); document.write( "x=2\r \n" ); document.write( "\n" ); document.write( "To find the y-intercept, substitute in 0 for x and solve for y. \n" ); document.write( "(((0)-2)^(2))/(16)+((y-2)^(2))/(4)=1\r \n" ); document.write( "\n" ); document.write( "Remove the parentheses around the expression 0. \n" ); document.write( "((0-2)^(2))/(16)+((y-2)^(2))/(4)=1\r \n" ); document.write( "\n" ); document.write( "Combine all similar expressions. \n" ); document.write( "((-2)^(2))/(16)+((y-2)^(2))/(4)=1\r \n" ); document.write( "\n" ); document.write( "Squaring an expression is the same as multiplying the expression by itself 2 times. \n" ); document.write( "((-2)(-2))/(16)+((y-2)^(2))/(4)=1\r \n" ); document.write( "\n" ); document.write( "Multiply -2 by -2 to get 4. \n" ); document.write( "(4)/(16)+((y-2)^(2))/(4)=1\r \n" ); document.write( "\n" ); document.write( "Reduce the expression (4)/(16) by removing a factor of 4 from the numerator and denominator. \n" ); document.write( "(1)/(4)+((y-2)^(2))/(4)=1\r \n" ); document.write( "\n" ); document.write( "The numerators of expressions that have equal denominators can be combined. In this case, (1)/(4) and ((y-2)^(2))/(4) have the same denominator of 4, so the numerators can be combined. \n" ); document.write( "(1+(y-2)^(2))/(4)=1\r \n" ); document.write( "\n" ); document.write( "Simplify the numerator of the expression. \n" ); document.write( "(y^(2)-4y+5)/(4)=1\r \n" ); document.write( "\n" ); document.write( "Multiply each term in the equation by 4. \n" ); document.write( "(y^(2)-4y+5)/(4)*4=1*4\r \n" ); document.write( "\n" ); document.write( "Simplify the left-hand side of the equation by canceling the common factors. \n" ); document.write( "y^(2)-4y+5=1*4\r \n" ); document.write( "\n" ); document.write( "Multiply 1 by 4 to get 4. \n" ); document.write( "y^(2)-4y+5=4\r \n" ); document.write( "\n" ); document.write( "To set the left-hand side of the equation equal to 0, move all the expressions to the left-hand side. \n" ); document.write( "y^(2)-4y+1=0\r \n" ); document.write( "\n" ); document.write( "Use the quadratic formula to find the solutions. In this case, the values are a=1, b=-4, and c=1. \n" ); document.write( "y=(-b\~(b^(2)-4ac))/(2a) where ay^(2)+by+c=0\r \n" ); document.write( "\n" ); document.write( "Use the standard form of the equation to find a, b, and c for this quadratic. \n" ); document.write( "a=1, b=-4, and c=1\r \n" ); document.write( "\n" ); document.write( "Substitute in the values of a=1, b=-4, and c=1. \n" ); document.write( "y=(-(-4)\~((-4)^(2)-4(1)(1)))/(2(1))\r \n" ); document.write( "\n" ); document.write( "Multiply -1 by each term inside the parentheses. \n" ); document.write( "y=(4\~((-4)^(2)-4(1)(1)))/(2(1))\r \n" ); document.write( "\n" ); document.write( "Simplify the section inside the radical. \n" ); document.write( "y=(4\2~(3))/(2(1))\r \n" ); document.write( "\n" ); document.write( "Simplify the denominator of the quadratic formula. \n" ); document.write( "y=(4\2~(3))/(2)\r \n" ); document.write( "\n" ); document.write( "First, solve the + portion of \. \n" ); document.write( "y=(4+2~(3))/(2)\r \n" ); document.write( "\n" ); document.write( "Simplify the expression to solve for the + portion of the \. \n" ); document.write( "y=2+~(3)\r \n" ); document.write( "\n" ); document.write( "Next, solve the - portion of \. \n" ); document.write( "y=(4-2~(3))/(2)\r \n" ); document.write( "\n" ); document.write( "Simplify the expression to solve for the - portion of the \. \n" ); document.write( "y=2-~(3)\r \n" ); document.write( "\n" ); document.write( "Solve the equation. \n" ); document.write( "y=2+~(3),2-~(3)\r \n" ); document.write( "\n" ); document.write( "These are the x and y intercepts of the equation ((x-2)^(2))/(16)+((y-2)^(2))/(4)=1. \n" ); document.write( "x=2, y=2+~(3),2-~(3)\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " |