2x-5y+7z=4
\n" );
document.write( "3x+y-12z=-8
\n" );
document.write( "5x+2y-4z=3
\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "I will assume you already know how to find the inverse\r\n" );
document.write( "of a matrix, and how to multiply two matrices. If you don't, \r\n" );
document.write( "post again asking how.\r\n" );
document.write( " \r\n" );
document.write( "First we form three matrices, A, X, and B.\r\n" );
document.write( " \r\n" );
document.write( "1. Matrix A is the 3x3 coefficient matrix A, which consists \r\n" );
document.write( "of just the three columns of x, y, and z coefficients. in \r\n" );
document.write( "that order, but does not contain the column of constants.\r\n" );
document.write( " \r\n" );
document.write( "
. \r\n" );
document.write( " \r\n" );
document.write( "2. Matrix X is the 3x1 matrix of variables
\r\n" );
document.write( " \r\n" );
document.write( "3. Matrix B is the 3x1 matrix, whose only column is the\r\n" );
document.write( "column of constants:
\r\n" );
document.write( " \r\n" );
document.write( "Next we form the matrix equation:\r\n" );
document.write( " \r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( "or\r\n" );
document.write( " \r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( "To solve the equation\r\n" );
document.write( " \r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( "we left-multiply both sides by
, the inverse of
.\r\n" );
document.write( " \r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( "Then since the associative principle holds for matrix multiplication,\r\n" );
document.write( "(even though the commutative principle DOES NOT!!!), we can move\r\n" );
document.write( "the parentheses on the left around the first two matrix factors:\r\n" );
document.write( " \r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( "Now since
, where I is the identity matrix, the\r\n" );
document.write( "above becomes:\r\n" );
document.write( " \r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( "and by the identity property:\r\n" );
document.write( " \r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( "Performing these operations with the actual matrices we have\r\n" );
document.write( "the equation
\r\n" );
document.write( " \r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( "Next we find the inverse of A, which is written A-1.\r\n" );
document.write( " \r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( "Then we indicate the left multiplication of both sides by\r\n" );
document.write( "
to get the equation
:\r\n" );
document.write( " \r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( "Next we use the associative principle to move the parentheses so that\r\n" );
document.write( "they are around the first two factors to get the equation
:\r\n" );
document.write( " \r\n" );
document.write( "
to get the equation
:\r\n" );
document.write( " \r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( "When we perform the matrix multiplication we get:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "The matrix on the left is the identity matrix\r\n" );
document.write( "\r\n" );
document.write( "Then when we multiply the identity matrix
by the column matrix of\r\n" );
document.write( "variables, we just get the matrix of variables, or the \r\n" );
document.write( "equation
\r\n" );
document.write( " \r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "or x=1, y=1, z=1\r\n" );
document.write( " \r\n" );
document.write( "Edwin
\n" );
document.write( "