document.write( "Question 387221: Can you help me solve this system? x^2+y^2=4 and y=x^2-2 \n" ); document.write( "
Algebra.Com's Answer #275918 by robertb(5830)\"\" \"About 
You can put this solution on YOUR website!
\"+x%5E2%2By%5E2=4+\" and \"y=x%5E2-2\".
\n" ); document.write( "The 2nd equation becomes \"y+%2B+2=x%5E2\". Substitute.
\n" ); document.write( "\"y%5E2+%2B+y+%2B+2+=+4\", or \"y%5E2+%2B+y+%2B+-2+=+0\".
\n" ); document.write( "(y+2)(y - 1) = 0.
\n" ); document.write( "y = -2, y = 1. When y = -2, then \"-2+%2B+2+=+x%5E2\", so x = 0.
\n" ); document.write( "When y = 1, then \"1%2B2+=+x%5E2\", or \"x%5E2+=+3\", or x = \"-sqrt%283%29\", \"sqrt%283%29\". Therefore there are 3 solutions: (\"-sqrt%283%29\", 1), (\"sqrt%283%29\", 1), and (0, -2). The solutions correspond to the 3 points of intersection of the parabola \"y=x%5E2-2\" and the circle \"+x%5E2%2By%5E2=4+\".
\n" ); document.write( "
\n" );