document.write( "Question 388114: Given: WX≅WZ; XW⊥XY; WZ⊥ZY\r
\n" ); document.write( "\n" ); document.write( "Prove: WY bisects ∠XYZ\r
\n" ); document.write( "\n" ); document.write( "Statement: \r
\n" ); document.write( "\n" ); document.write( "1. XW⊥XY; WZ⊥ZY (given)\r
\n" ); document.write( "\n" ); document.write( "2. ∠YXW and ∠WZY are right angles\r
\n" ); document.write( "\n" ); document.write( "3. WX≅WZ (given)\r
\n" ); document.write( "\n" ); document.write( "4. YW≅YW\r
\n" ); document.write( "\n" ); document.write( "5. ΔXYW≅ΔZYW (HL theorem)\r
\n" ); document.write( "\n" ); document.write( "6. ∠1≅∠2\r
\n" ); document.write( "\n" ); document.write( "7. m∠1=m∠2 (definition of congruent angles)\r
\n" ); document.write( "\n" ); document.write( "8. WY bisects ∠XYZ\r
\n" ); document.write( "\n" ); document.write( "Choose the correct reason for statement 4?
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #274895 by richard1234(7193)\"\" \"About 
You can put this solution on YOUR website!
YW = YW is pretty obvious, I believe it's called the reflexive property but I'm not 100% sure. \n" ); document.write( "
\n" );