document.write( "Question 388113: Given: WX≅WZ; XW⊥XY; WZ⊥ZY\r
\n" ); document.write( "\n" ); document.write( "Prove: WY bisects ∠XYZ\r
\n" ); document.write( "\n" ); document.write( "Statement: \r
\n" ); document.write( "\n" ); document.write( "1. XW⊥XY; WZ⊥ZY (given)\r
\n" ); document.write( "\n" ); document.write( "2. ∠YXW and ∠WZY are right angles\r
\n" ); document.write( "\n" ); document.write( "3. WX≅WZ (given)\r
\n" ); document.write( "\n" ); document.write( "4. YW≅YW\r
\n" ); document.write( "\n" ); document.write( "5. ΔXYW≅ΔZYW (HL theorem)\r
\n" ); document.write( "\n" ); document.write( "6. ∠1≅∠2\r
\n" ); document.write( "\n" ); document.write( "7. m∠1=m∠2 (definition of congruent angles)\r
\n" ); document.write( "\n" ); document.write( "8. WY bisects ∠XYZ\r
\n" ); document.write( "\n" ); document.write( "what is the correct reason for statement 2?
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #274805 by richard1234(7193)\"\" \"About 
You can put this solution on YOUR website!
By definition, since WX, XY and WZ, ZY are perpendicular, the angles between them must be right angles. \n" ); document.write( "
\n" );