document.write( "Question 388113: Given: WX≅WZ; XW⊥XY; WZ⊥ZY\r
\n" );
document.write( "\n" );
document.write( "Prove: WY bisects ∠XYZ\r
\n" );
document.write( "\n" );
document.write( "Statement: \r
\n" );
document.write( "\n" );
document.write( "1. XW⊥XY; WZ⊥ZY (given)\r
\n" );
document.write( "\n" );
document.write( "2. ∠YXW and ∠WZY are right angles\r
\n" );
document.write( "\n" );
document.write( "3. WX≅WZ (given)\r
\n" );
document.write( "\n" );
document.write( "4. YW≅YW\r
\n" );
document.write( "\n" );
document.write( "5. ΔXYW≅ΔZYW (HL theorem)\r
\n" );
document.write( "\n" );
document.write( "6. ∠1≅∠2\r
\n" );
document.write( "\n" );
document.write( "7. m∠1=m∠2 (definition of congruent angles)\r
\n" );
document.write( "\n" );
document.write( "8. WY bisects ∠XYZ\r
\n" );
document.write( "\n" );
document.write( "what is the correct reason for statement 2?
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #274805 by richard1234(7193) You can put this solution on YOUR website! By definition, since WX, XY and WZ, ZY are perpendicular, the angles between them must be right angles. \n" ); document.write( " |