document.write( "Question 388133: Use the rational zero theorem to find all possible rational zeros for the polynomial function. m(x)= x^3+4x^2+4x+3 \n" ); document.write( "
Algebra.Com's Answer #274475 by robertb(5830)![]() ![]() You can put this solution on YOUR website! Using the rational root theorem, the possible rational roots are -3, -1, 1, or 3. Now m(-1) = 2, m(1) = 12, m(3) = 78, but m(-3) = 0, so x = -3 is a (rational) root. By performing synthetic division, the quotient after dividing |