document.write( "Question 385414: Find the center of the circle defined by the equation: 4x^2+4y^2+24x-56y+168=0. \n" ); document.write( "
Algebra.Com's Answer #272726 by ewatrrr(24785)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "Hi,
\n" ); document.write( "Standard Form of an Equation of a Circle is \"%28x-h%29%5E2+%2B+%28y-k%29%5E2+=+r%5E2\"
\n" ); document.write( "4x^2+4y^2+24x-56y+168 = 0
\n" ); document.write( "4x^2+ 24x + 4y^2-56y+168 = 0
\n" ); document.write( "x^2 +6x +y^2 - 14y + 42 = 0 Completing both squares
\n" ); document.write( " (x+3)^2 -9 + (y -7)^2 -49 + 42 = 0
\n" ); document.write( " (x+3)^2 (y -7)^2 -16 = 0
\n" ); document.write( " (x+3)^2 (y -7)^2 = 16
\n" ); document.write( "Center is Pt(-3,7)
\n" ); document.write( " \n" ); document.write( "
\n" );