document.write( "Question 384695: OK, last weary question for the night: have I gotten this one right??
\n" ); document.write( "4x^2 - 21x + 20
\n" ); document.write( "(4x^2 - 25x) + (4x = 20)
\n" ); document.write( "x(4^2 - 25) + (4(x + 5) = (4^2 -25)(x+4)??????????????
\n" ); document.write( "thanks in advance - and where've y'all been all my life????????
\n" ); document.write( "

Algebra.Com's Answer #272331 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"4x%5E2-21x%2B20\", we can see that the first coefficient is \"4\", the second coefficient is \"-21\", and the last term is \"20\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"4\" by the last term \"20\" to get \"%284%29%2820%29=80\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"80\" (the previous product) and add to the second coefficient \"-21\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"80\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"80\":\r
\n" ); document.write( "\n" ); document.write( "1,2,4,5,8,10,16,20,40,80\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-4,-5,-8,-10,-16,-20,-40,-80\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"80\".\r
\n" ); document.write( "\n" ); document.write( "1*80 = 80
\n" ); document.write( "2*40 = 80
\n" ); document.write( "4*20 = 80
\n" ); document.write( "5*16 = 80
\n" ); document.write( "8*10 = 80
\n" ); document.write( "(-1)*(-80) = 80
\n" ); document.write( "(-2)*(-40) = 80
\n" ); document.write( "(-4)*(-20) = 80
\n" ); document.write( "(-5)*(-16) = 80
\n" ); document.write( "(-8)*(-10) = 80\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-21\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1801+80=81
2402+40=42
4204+20=24
5165+16=21
8108+10=18
-1-80-1+(-80)=-81
-2-40-2+(-40)=-42
-4-20-4+(-20)=-24
-5-16-5+(-16)=-21
-8-10-8+(-10)=-18
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-5\" and \"-16\" add to \"-21\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-5\" and \"-16\" both multiply to \"80\" and add to \"-21\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-21x\" with \"-5x-16x\". Remember, \"-5\" and \"-16\" add to \"-21\". So this shows us that \"-5x-16x=-21x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"4x%5E2%2Bhighlight%28-5x-16x%29%2B20\" Replace the second term \"-21x\" with \"-5x-16x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%284x%5E2-5x%29%2B%28-16x%2B20%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%284x-5%29%2B%28-16x%2B20%29\" Factor out the GCF \"x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%284x-5%29-4%284x-5%29\" Factor out \"4\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x-4%29%284x-5%29\" Combine like terms. Or factor out the common term \"4x-5\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"4x%5E2-21x%2B20\" factors to \"%28x-4%29%284x-5%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"4x%5E2-21x%2B20=%28x-4%29%284x-5%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%28x-4%29%284x-5%29\" to get \"4x%5E2-21x%2B20\" or by graphing the original expression and the answer (the two graphs should be identical).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "If you need more help, email me at jim_thompson5910@hotmail.com\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Also, feel free to check out my tutoring website\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Jim
\n" ); document.write( "
\n" );