document.write( "Question 5302: Please can you show me how to solve this problem
\n" );
document.write( "I know the answere but I cant solve it\r
\n" );
document.write( "\n" );
document.write( "x^2+y=31
\n" );
document.write( "y^2+x=41 \n" );
document.write( "
Algebra.Com's Answer #2690 by khwang(438)![]() ![]() ![]() You can put this solution on YOUR website! x^2+y=31..(1) \n" ); document.write( " y^2+x=41...(2)\r \n" ); document.write( "\n" ); document.write( " From (1): y = 31-x^2 \n" ); document.write( " Goto (2), we get (31-x^2)^2 + x = 41 \n" ); document.write( " or x^4 - 62x^2 + x + 920 = 0\r \n" ); document.write( "\n" ); document.write( " Use synthetic division \n" ); document.write( " 1 + 0 - 62 + 1 + 920 (5 \n" ); document.write( " + 5 + 25 -185 -920 \n" ); document.write( " -------------------- \n" ); document.write( " 1 + 5 - 37 -184 + 0\r \n" ); document.write( "\n" ); document.write( " After factoring, (x-5)(x^3 + 5x^2 -37x -184) = 0.\r \n" ); document.write( "\n" ); document.write( " When x = 5 and y = 31 -25 = 6\r \n" ); document.write( "\n" ); document.write( " However, the solutions of x^3 + 5x^2 -37x -184 = 0. \n" ); document.write( " are very complicated. (1 real, two complex, try to use Cardan formula) \n" ); document.write( " \n" ); document.write( " So, here I just give you one solution.\r \n" ); document.write( "\n" ); document.write( " Kenny\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |