document.write( "Question 370483: A rectangular piece of cardboard is 13 inches long and 9 inches wide. From each corner a square piece is cut out, and then the flaps are turned up to form an open box. Determine the length of a side of the square pieces so that the volume of the box is as large as possible. \r
\n" ); document.write( "\n" ); document.write( "i got this:
\n" ); document.write( "V=(13-2h)(9-2h)(h)
\n" ); document.write( "but what do i do next?
\n" ); document.write( "

Algebra.Com's Answer #264071 by Edwin McCravy(20054)\"\" \"About 
You can put this solution on YOUR website!
\r\n" );
document.write( "You then \r\n" );
document.write( "\r\n" );
document.write( "1. Multiply out the right side\r\n" );
document.write( "\r\n" );
document.write( "2. Find \"dV%2Fdh\" \r\n" );
document.write( "\r\n" );
document.write( "3. Set \"dV%2Fdh\" = 0.\r\n" );
document.write( "\r\n" );
document.write( "4. Show that it is a maximum. \r\n" );
document.write( "\r\n" );
document.write( "--------------------------------------\r\n" );
document.write( "\r\n" );
document.write( "1.\r\n" );
document.write( "\"V=%2813-2h%29%289-2h%29%28h%29\"\r\n" );
document.write( "\r\n" );
document.write( "\"V=%28117-26h-18h%2B4h%5E2%29%28h%29\"\r\n" );
document.write( "\r\n" );
document.write( "\"V=%28117-44h%2B4h%5E2%29%28h%29\"\r\n" );
document.write( "\r\n" );
document.write( "\"V=117h-44h%5E2%2B4h%5E3\"\r\n" );
document.write( "\r\n" );
document.write( "2.\r\n" );
document.write( "\"dV%2Fdh=117-88h%2B12h%5E2\"\r\n" );
document.write( "\r\n" );
document.write( "3.\r\n" );
document.write( "\"117-88h%2B12h%5E2=0\"\r\n" );
document.write( "\r\n" );
document.write( "\"12h%5E2-88h%2B117=0\"\r\n" );
document.write( "\r\n" );
document.write( "\"h+=+%28-b+%2B-+sqrt%28+b%5E2-4%2Aa%2Ac+%29%29%2F%282%2Aa%29+\"\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\"h+=+%2888+%2B-+sqrt%287744-5616%29%29%2F24+\"\r\n" );
document.write( "\r\n" );
document.write( "\"h+=+%2888+%2B-+sqrt%282128%29%29%2F24+\"\r\n" );
document.write( "\r\n" );
document.write( "\"h+=+%2888+%2B-+sqrt%2816%2A133%29%29%2F24+\"\r\n" );
document.write( "\r\n" );
document.write( "\"h+=+%2888+%2B-+4sqrt%28133%29%29%2F24+\"\r\n" );
document.write( "\r\n" );
document.write( "\"h+=+%284%2822+%2B-+sqrt%28133%29%29%29%2F24+\"\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\"h+=+%2822+%2B-+sqrt%28133%29%29%2F6+\"\r\n" );
document.write( "\r\n" );
document.write( "using the + we get h = 5.588760432\r\n" );
document.write( "using the - we get h = 1.744572901\r\n" );
document.write( "\r\n" );
document.write( "4.\r\n" );
document.write( "Using the 2nd derivative test.\r\n" );
document.write( "\r\n" );
document.write( "\"dV%2Fdh=117-88h%2B12h%5E2\"\r\n" );
document.write( "\"d%5E2V%2Fdh%5E2=-88%2B24h\"\r\n" );
document.write( "\r\n" );
document.write( "Substituting h = 5.588760432 gives a positive second derivative\r\n" );
document.write( "which means the graph is concave upward there and is a minimum. But\r\n" );
document.write( "we want a maximum.  [We could also tell that this could not be the\r\n" );
document.write( "answer because we would be cutting more than half of the shorter side\r\n" );
document.write( "and this would be impossible.)\r\n" );
document.write( "\r\n" );
document.write( "Substituting h = 1.744572901 gives a negative second derivative\r\n" );
document.write( "which means the graph is concave downward there and is a maximum.\r\n" );
document.write( "\r\n" );
document.write( "Therefore the correct answer is  h = \"%2822+%2B-+sqrt%28133%29%29%2F6\"\r\n" );
document.write( "or h = 1.744572901. \r\n" );
document.write( "\r\n" );
document.write( "This will gives a box of approximately 91.43817871 cubic inches.\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" ); document.write( "
\n" );