document.write( "Question 367941: Graph the quadratic function \"f%28x%29=-7x%5E2-10x%2B5\". State the ordered pairs representing the x-intercept(s), y-intercept (if any), and the vertex of the parabola. If the parabola has a maximum or minimum, give its coordinates.\r
\n" ); document.write( "\n" ); document.write( "So far I have the following:
\n" ); document.write( "To find the y-intercept set x=0 and solve for f(x)
\n" ); document.write( "\"f%280%29=0%5E2-10%280%29%2B5\"
\n" ); document.write( "\"f%280%29=0-0%2B5\"
\n" ); document.write( "\"f%280%29=5\"
\n" ); document.write( "y-intercept is at (0,5)\r
\n" ); document.write( "\n" ); document.write( "To find the x-intercept set x=0 and solve for x
\n" ); document.write( "\"0=-7x%5E2-10x%2B5\"
\n" ); document.write( "\"7x%5E2%2B10x-5=0\"
\n" ); document.write( "\"7x%5E2%2B10x=5\"
\n" ); document.write( "\"7x%5E2=5-10x%2F7\"\r
\n" ); document.write( "\n" ); document.write( "and then I get stuck...is this even right to this point? How do I finish this problem and how do I graph it? Also, how do I know if the parabola has a maximum or minimum and give its coordinates?
\n" ); document.write( "

Algebra.Com's Answer #262267 by solver91311(24713)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Use the quadratic formula where\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( ", , and \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Roughly\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "or\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "For any quadratic function of the form:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The -coordinate of the -intercept is\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "hence the graph intercepts the -axis at \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "If\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "is a pair of real numbers (which is true if and only if ), then the graph intercepts the -axis at\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "and\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "If\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "is NOT a pair of real numbers (which is true if and only if ), then the graph does not intercept the -axis at all.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The -coordinate of the vertex is \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The -coordinate of the vertex is \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "If the lead coefficient is positive, that is if \ 0\">, then the parabola opens upward and the vertex is a minimum. If the lead coefficient is negative, that is if , then the parabola opens downward and the vertex is a maximum.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Finally, the axis of symmetry is the vertical line: \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "John
\n" ); document.write( "
\n" ); document.write( "My calculator said it, I believe it, that settles it
\n" ); document.write( "
\"The

\n" ); document.write( "
\n" ); document.write( "
\n" );