document.write( "Question 359681: Solve the equation algebraically for \"x\" where 0≤x<2π.
\n" ); document.write( "sinx + cosx = 1\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Thank you
\n" ); document.write( "

Algebra.Com's Answer #256675 by Fombitz(32388)\"\" \"About 
You can put this solution on YOUR website!
\"sin%28x%29%2Bcos%28x%29=1\"
\n" ); document.write( "\"sin%28x%29=1-cos%28x%29\"
\n" ); document.write( "\"%28sin%28x%29%29%5E2=%281-cos%28x%29%29%5E2\"
\n" ); document.write( "\"1-%28cos%28x%29%29%5E2=1-2cos%28x%29%2Bcos%28x%29%5E2\"
\n" ); document.write( "\"2%28cos%28x%29%29%5E2-2cos%28x%29=0\"
\n" ); document.write( "\"cos%28x%29%2A%28cos%28x%29-1%29=0\"
\n" ); document.write( "Two solutions:
\n" ); document.write( "\"cos%28x%29=0\"
\n" ); document.write( "\"x=pi%2F2\" and \"x=%283pi%29%2F2\"
\n" ); document.write( "However at \"x=%283pi%29%2F2\", \"sin%28x%29=-1\" and \"cos%28x%29=0\"
\n" ); document.write( "so that \"sin%28x%29%2Bcos%28x%29%3C%3E1\"
\n" ); document.write( "Only \"highlight%28x=pi%2F2%29\" is a valid solution.
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( "\"cos%28x%29-1=0\"
\n" ); document.write( "\"cos%28x%29=1\"
\n" ); document.write( "\"highlight%28x=0%29\"
\n" ); document.write( "
\n" ); document.write( "
\n" );