document.write( "Question 358056: sec theda - cos theda = sin thedacos theda \n" ); document.write( "
Algebra.Com's Answer #255602 by nyc_function(2741) You can put this solution on YOUR website! The word is theta not theda.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "You did not say whay exactly needs to be done here but my guess is proving trig identities.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "When proving trig identities, convert everything to sine and cosine.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "secθ - cosθ = sinθcosθ\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We know that secθ = 1/cosθ.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So, replace sine theta with 1/cos theta.\r \n" ); document.write( "\n" ); document.write( " \r \n" ); document.write( "\n" ); document.write( "1/cosθ - cosθ = sinθcosθ\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "On the left side, we simply apply the rules for subtraction of fractions.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The left side becomes (1 - cos^2θ)/cosθ.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The equation now looks like this:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "(1 - cos^2θ)/cosθ = sinθcosθ\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Can you take it from here?\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |