document.write( "Question 358027: Hi Stuck on this question
\n" ); document.write( "Express the following as a partial fraction\r
\n" ); document.write( "\n" ); document.write( "3x-1/x^2+4x+4\r
\n" ); document.write( "\n" ); document.write( "Really confuced here, i take it you factorise the equation to get \r
\n" ); document.write( "\n" ); document.write( "3x-1/(x+2)(x+2)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Thanks
\n" ); document.write( "

Algebra.Com's Answer #255577 by solver91311(24713)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So far, so good. But when you decompose partial fractions, if you have a factor squared in the original denominator, you have to represent the single factor in one denominator and the squared factor in another one, thus:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Apply the LCD in the RHS:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Hence, equating the coefficients in the numerators:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "And\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Therefore:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "John
\n" ); document.write( "
\n" ); document.write( "My calculator said it, I believe it, that settles it
\n" ); document.write( "
\"The

\n" ); document.write( "
\n" ); document.write( "
\n" );