document.write( "Question 355143: find -intercepts -vertex -max or min -range \r
\n" );
document.write( "\n" );
document.write( "g(x)=x^2-6x+5 \n" );
document.write( "
Algebra.Com's Answer #253687 by ewatrrr(24785)![]() ![]() You can put this solution on YOUR website! Hi,\r \n" ); document.write( "\n" ); document.write( "g(x)=x^2-6x+5 \n" ); document.write( ". \n" ); document.write( "Factoring to find the intercepts \n" ); document.write( "g(x)=x^2-6x+5 = (x - 5)(x - 1) \n" ); document.write( ". \n" ); document.write( "Intercepts (5,0) and (1, 0) \n" ); document.write( ". \n" ); document.write( "*Note: Complete the square to put into the vertex form of an equation of a parabola y = a(x - h)^2 + k where (h,k) is the vertex \n" ); document.write( ". \n" ); document.write( "(completing the square by adding and subtracting 9)\r \n" ); document.write( "\n" ); document.write( "g(x) = x^2-6x+5 = (x^2 - 6x + 9) -9 + 5= (x-3)^2 -4\r \n" ); document.write( "\n" ); document.write( ". \n" ); document.write( "vertex = (3, -4) this is the minimum \n" ); document.write( "(a = 1, parabola opens upward) \n" ); document.write( ". \n" ); document.write( "Range is ( \n" ); document.write( ". \n" ); document.write( " |