document.write( "Question 355026: the ten's digit of a two digit number is 3 greater than the unit's digit. if the number is divided by the sum of the digits, the quotient is 6 and the remainder is 8. find the number. \n" ); document.write( "
Algebra.Com's Answer #253586 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! the ten's digit of a two digit number is 3 greater than the unit's digit. if the number is divided by the sum of the digits, the quotient is 6 and the remainder is 8. find the number. \n" ); document.write( "---- \n" ); document.write( "Let the number be 10t+n \n" ); document.write( "---- \n" ); document.write( "Equations: \n" ); document.write( "t = u + 3. \n" ); document.write( "(10t+u)/(t+u) = 6 + 8/(t+u) \n" ); document.write( "------------------------------------ \n" ); document.write( "Substitute and solve for \"u\": \n" ); document.write( "(10u + 30)/(u+3+u) = 6 + 8/(u+3+u) \n" ); document.write( "--- \n" ); document.write( "(10u + 30)/(2u+3) = 6 + 8/(2u+3) \n" ); document.write( "---- \n" ); document.write( "Multiply thru by (2u+3) to get: \n" ); document.write( "10u+30 = 6(2u+3) + 8 \n" ); document.write( "10u + 30 = 12u + 26 \n" ); document.write( "2u = 4 \n" ); document.write( "u = 2 \n" ); document.write( "------ \n" ); document.write( "Since t = u+3, t = 5 \n" ); document.write( "--- \n" ); document.write( "The number is 10t+u = 52 \n" ); document.write( "================================ \n" ); document.write( "cheers, \n" ); document.write( "Stan H. \n" ); document.write( " |