document.write( "Question 355026: the ten's digit of a two digit number is 3 greater than the unit's digit. if the number is divided by the sum of the digits, the quotient is 6 and the remainder is 8. find the number. \n" ); document.write( "
Algebra.Com's Answer #253586 by stanbon(75887)\"\" \"About 
You can put this solution on YOUR website!
the ten's digit of a two digit number is 3 greater than the unit's digit. if the number is divided by the sum of the digits, the quotient is 6 and the remainder is 8. find the number.
\n" ); document.write( "----
\n" ); document.write( "Let the number be 10t+n
\n" ); document.write( "----
\n" ); document.write( "Equations:
\n" ); document.write( "t = u + 3.
\n" ); document.write( "(10t+u)/(t+u) = 6 + 8/(t+u)
\n" ); document.write( "------------------------------------
\n" ); document.write( "Substitute and solve for \"u\":
\n" ); document.write( "(10u + 30)/(u+3+u) = 6 + 8/(u+3+u)
\n" ); document.write( "---
\n" ); document.write( "(10u + 30)/(2u+3) = 6 + 8/(2u+3)
\n" ); document.write( "----
\n" ); document.write( "Multiply thru by (2u+3) to get:
\n" ); document.write( "10u+30 = 6(2u+3) + 8
\n" ); document.write( "10u + 30 = 12u + 26
\n" ); document.write( "2u = 4
\n" ); document.write( "u = 2
\n" ); document.write( "------
\n" ); document.write( "Since t = u+3, t = 5
\n" ); document.write( "---
\n" ); document.write( "The number is 10t+u = 52
\n" ); document.write( "================================
\n" ); document.write( "cheers,
\n" ); document.write( "Stan H.
\n" ); document.write( "
\n" );