document.write( "Question 350553: While following a circular path of radius 8.0 m a truck requires a centripetal acceleration of 2.0 m/s^2. What is the period and speed? \n" ); document.write( "
Algebra.Com's Answer #250679 by nyc_function(2741) You can put this solution on YOUR website! The centripetal force is \r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Fcp = m*v^2/r \r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "and since F = m*a ---> a = F/m = mv^2/(r*m)-->\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "a = v^2/r (a = centripetal acceleration)\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "plug in your numbers:\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "2 m/sec^2 = v^2/8 m\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "v^2 = 16 m^2/sec^2\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "v = 4 m/sec\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |