document.write( "Question 350597: I need a correction to my answer\r
\n" ); document.write( "\n" ); document.write( "the problem is (4+6i)(3+2i)+4i - (1+i)/(3-2i)\r
\n" ); document.write( "\n" ); document.write( "my answer was (343i-1)/13
\n" ); document.write( "

Algebra.Com's Answer #250597 by CharlesG2(834)\"\" \"About 
You can put this solution on YOUR website!
\"I need a correction to my answer\r
\n" ); document.write( "\n" ); document.write( "the problem is (4+6i)(3+2i)+4i - (1+i)/(3-2i)\r
\n" ); document.write( "\n" ); document.write( "my answer was (343i-1)/13\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "(4 + 6i)(3 + 2i) + 4i - (1 + i)/(3 - 2i)
\n" ); document.write( "12 + 8i + 18i + 12i^2 + 4i - [(1 + i)(3 + 2i)]/[(3 - 2i)(3 + 2i)]
\n" ); document.write( "(multiplied the 2 complex numbers with FOIL, First Outer Inner Last,
\n" ); document.write( "and multiplied top and bottom of the fraction
\n" ); document.write( "by the conjugate of its denominator)
\n" ); document.write( "12 + 30i - 12 - (3 + 2i + 3i + 2i^2)/(9 + 6i - 6i - 4i^2)
\n" ); document.write( "(simplified and also multiplied out the numerator and denominator of the fraction with FOIL, 12i^2 = -12)
\n" ); document.write( "30i - (3 - 2 + 5i)/(9 + 4)
\n" ); document.write( "(simplified, 2i^2 = -2, -4i^2 = 4)
\n" ); document.write( "30i - (1 + 5i)/13
\n" ); document.write( "(simplified)
\n" ); document.write( "(30i * 13 - 1 - 5i)/13
\n" ); document.write( "(multiplied 30i by 13/13)
\n" ); document.write( "(390i - 5i - 1)/13
\n" ); document.write( "(simplified)
\n" ); document.write( "(385i - 1)/13
\n" ); document.write( "in a + bi form this would be -1/13 + (385/13)i\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );