document.write( "Question 347928: a.(a b^2) ^5 simplify
\n" ); document.write( "b. (2x)^2 x (2x)^4 simplify
\n" ); document.write( "c.(m^3 n^2) ^3
\n" ); document.write( "d. 2^5 x 2^-7/2^3
\n" ); document.write( "

Algebra.Com's Answer #248825 by haileytucki(390)\"\" \"About 
You can put this solution on YOUR website!
A.
\n" ); document.write( "(ab^(2))^(5)\r
\n" ); document.write( "\n" ); document.write( "Expand the exponent (5) to the expression.
\n" ); document.write( "a^(5)b^(2*5)\r
\n" ); document.write( "\n" ); document.write( "Multiply 2 by 5 to get 10.
\n" ); document.write( "a^(5)b^(10)\r
\n" ); document.write( "\n" ); document.write( "B.(2x)^(2)(2x)^(4)\r
\n" ); document.write( "\n" ); document.write( "Expand the exponent (2) to the expression.
\n" ); document.write( "2^(2)x^(2)(2x)^(4)\r
\n" ); document.write( "\n" ); document.write( "Squaring a number is the same as multiplying the number by itself (2*2). In this case, 2 squared is 4.
\n" ); document.write( "4x^(2)(2x)^(4)\r
\n" ); document.write( "\n" ); document.write( "Expand the exponent (4) to the expression.
\n" ); document.write( "(4x^(2))*2^(4)x^(4)\r
\n" ); document.write( "\n" ); document.write( "Raising a number to the 4th power is the same as multiplying the number by itself 4 times. In this case, 2 raised to the 4th power is 16.
\n" ); document.write( "(4x^(2))*16x^(4)\r
\n" ); document.write( "\n" ); document.write( "Multiply 16x^(4) by each term inside the parentheses.
\n" ); document.write( "64x^(6)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "C.
\n" ); document.write( "(m^(3)n^(2))^(3)\r
\n" ); document.write( "\n" ); document.write( "Expand the exponent (3) to the expression.
\n" ); document.write( "m^(3*3)n^(2*3)\r
\n" ); document.write( "\n" ); document.write( "Multiply 3 by 3 to get 9.
\n" ); document.write( "m^(9)n^(2*3)\r
\n" ); document.write( "\n" ); document.write( "Multiply 2 by 3 to get 6.
\n" ); document.write( "m^(9)n^(6)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "D.
\n" ); document.write( "2^(5)*(2^(-7))/(2^(3))\r
\n" ); document.write( "\n" ); document.write( "Raising a number to the 5th power is the same as multiplying the number by itself 5 times. In this case, 2 raised to the 5th power is 32.
\n" ); document.write( "32*(2^(-7))/(2^(3))\r
\n" ); document.write( "\n" ); document.write( "To divide 2^(-7) by 2^(3), subtract the denominator exponent from the numerator exponent.
\n" ); document.write( "32*2^(-7-3)\r
\n" ); document.write( "\n" ); document.write( "Subtract 3 from -7 to get -10.
\n" ); document.write( "32*2^(-10)\r
\n" ); document.write( "\n" ); document.write( "Remove the negative exponent by rewriting 2^(-10) as (1)/(2^(10)). A negative exponent follows the rule a^(-n)=(1)/(a^(n)).
\n" ); document.write( "32*(1)/(2^(10))\r
\n" ); document.write( "\n" ); document.write( "Raising a number to the 10th power is the same as multiplying the number by itself 10 times. In this case, 2 raised to the 10th power is 1024.
\n" ); document.write( "32*(1)/(1024)\r
\n" ); document.write( "\n" ); document.write( "Cancel the common factor of 32 from the first term 32 and the denominator of the second term (1)/(1024).
\n" ); document.write( "1*(1)/(32)\r
\n" ); document.write( "\n" ); document.write( "Multiply 1 by (1)/(32) to get (1)/(32).
\n" ); document.write( "(1)/(32)\r
\n" ); document.write( "\n" ); document.write( "The approximate value of 2^(5)*(2^(-7))/(2^(3)) is 0.03.
\n" ); document.write( "0.03
\n" ); document.write( "
\n" );