document.write( "Question 347560: which direction does the parabola for the quadratic equation y = -x2 + 12x + 15 open \n" ); document.write( "
Algebra.Com's Answer #248456 by haileytucki(390)\"\" \"About 
You can put this solution on YOUR website!
y=-x^(2)+12x+15\r
\n" ); document.write( "\n" ); document.write( "To create a trinomial square on the left-hand side of the equation, add a value to both sides of the equation that is equal to the square of half the coefficient of x. In this problem, add (-6)^(2) to both sides of the equation.
\n" ); document.write( "y=-1(x^(2)-12x+36)-1(-15)-(-1)(0+36)\r
\n" ); document.write( "\n" ); document.write( "Remove the 0 from the polynomial; adding or subtracting 0 does not change the value of the expression.
\n" ); document.write( "y=-1(x^(2)-12x+36)-1(-15)-(-1)(36)\r
\n" ); document.write( "\n" ); document.write( "Factor the perfect trinomial square into (x-6)^(2).
\n" ); document.write( "y=-1((x-6)^(2))-1(-15)-(-1)(36)\r
\n" ); document.write( "\n" ); document.write( "Factor the perfect trinomial square into (x-6)^(2).
\n" ); document.write( "y=-1(x-6)^(2)-1(-15)-(-1)(36)\r
\n" ); document.write( "\n" ); document.write( "Multiply -1 by each term inside the parentheses.
\n" ); document.write( "y=-1(x-6)^(2)+15-(-1)(36)\r
\n" ); document.write( "\n" ); document.write( "Multiply -1 by 36 to get -36.
\n" ); document.write( "y=-1(x-6)^(2)+15-(-36)\r
\n" ); document.write( "\n" ); document.write( "Multiply -1 by each term inside the parentheses.
\n" ); document.write( "y=-1(x-6)^(2)+15+36\r
\n" ); document.write( "\n" ); document.write( "Add 36 to 15 to get 51.
\n" ); document.write( "y=-1(x-6)^(2)+51\r
\n" ); document.write( "\n" ); document.write( "This is the form of a paraboloa. Use this form to determine the values used to find vertex and x-y intercepts.
\n" ); document.write( "y=a(x-h)^(2)+k\r
\n" ); document.write( "\n" ); document.write( "Use the standard form to determine the vertex and x-y intercepts.
\n" ); document.write( "a=-1_k=51_h=6\r
\n" ); document.write( "\n" ); document.write( "The vertex of a parabola is (h,k).
\n" ); document.write( "Vertex: (6,51)\r
\n" ); document.write( "\n" ); document.write( "This formula is used to find the distance from the vertex to the focus.
\n" ); document.write( "(1)/(4p)=a\r
\n" ); document.write( "\n" ); document.write( "Substitute the value of a into the formula.
\n" ); document.write( "(1)/(4p)=-1\r
\n" ); document.write( "\n" ); document.write( "Solve the equation for p.
\n" ); document.write( "p=-(1)/(4)\r
\n" ); document.write( "\n" ); document.write( "Add p to the vertex to find the focus. If the parabola points up or down add p to the y-coordinate of the vertex, if it points left or right add it to the x-coordinate.
\n" ); document.write( "Focus=(6,51-(1)/(4))\r
\n" ); document.write( "\n" ); document.write( "Find the focus.
\n" ); document.write( "Focus=(6,(203)/(4))\r
\n" ); document.write( "\n" ); document.write( "A parabola can also be defined as locus of points in a plane which are equidistant from a given point (the focus) and a given line (the directrix).
\n" ); document.write( "y=51-(-(1)/(4))\r
\n" ); document.write( "\n" ); document.write( "Find the directrix.
\n" ); document.write( "Directrix: y=(205)/(4)\r
\n" ); document.write( "\n" ); document.write( "The axis of symmetry is the line that passes through the vertex and focus. The two sides of a graph on either side of the axis of symmetry look like mirror images of each other.
\n" ); document.write( "Axis of Symmetry: x=6\r
\n" ); document.write( "\n" ); document.write( "These values represent the important values for graphing and analyzing a parabola.
\n" ); document.write( "Vertex: (6,51)_Focus: (6,(203)/(4))_Directrix: y=(205)/(4)_Axis of Symmetry: x=6
\n" ); document.write( "
\n" );